
.lu
software verification & validation
VVS

Automated Testing
of Autonomous Driving Assistance

Systems

Lionel Briand

SEMLA, Montreal, 2018

Collaborative Research @ SnT

2

• Research in context
• Addresses actual needs
• Well-defined problem
• Long-term collaborations
• Our lab is the industry

Software Verification and
Validation @ SnT Centre

3

• Group established in 2012

• Focus: Automated, novel, cost-
effective V&V solutions

• ERC Advanced Grant

• ~ 25 staff members

• Industry and public partnerships

Introduction

4

Cyber-Physical Systems
• A system of collaborating computational elements controlling

physical entities

5

Autonomous CPS

• Read sensors, i.e., collect data about their environment

• Make predictions about their environment

• Make (optimal) decisions about how to behave to achieve
some objective(s) based on predictions

• Send commands to actuators according to decisions

• Often mission or safety critical
6

Advanced Driver Assistance
Systems (ADAS)

7

Automated Emergency Braking (AEB)

Pedestrian Protection (PP)

Lane Departure Warning (LDW)

Traffic Sign Recognition (TSR)

Advanced Driver Assistance
Systems (ADAS)

Decisions are made over time based on sensor data

8

Sensors

Controller

Actuators Decision

Sensors
/Camera

Environment

ADAS

A General and Fundamental Shift
• Increasingly so, it is easier to learn behavior from data using

machine learning, rather than specify and code

• Deep learning, reinforcement learning …

• Example: Neural networks (deep learning)

• Millions of weights learned

• No explicit code, no specifications

• Verification, testing?
9

Testing Implications

• Test oracles? No explicit, expected test behavior

• Test completeness? No source code, no specification

10

CPS Development Process

11

Functional modeling:
• Controllers
• Plant
• Decision

Continuous and discrete
Simulink models

Model simulation and
testing

Architecture modelling
• Structure
• Behavior
• Traceability

System engineering modeling
(SysML)

Analysis:
• Model execution and

testing
• Model-based testing
• Traceability and

change impact
analysis

• ...

(partial) Code generation

Deployed executables on
target platform

Hardware (Sensors ...)
Analog simulators

Testing (expensive)

Hardware-in-the-Loop
Stage

Software-in-the-Loop
StageModel-in-the-Loop Stage

MiL Components

12

Sensor

Controller

Actuator Decision

Plant

Opportunities and Challenges
• Early functional models (MiL) offer opportunities for early

functional verification and testing

• But a challenge for constraint solvers and model checkers:

• Continuous mathematical models, e.g., differential
equations

• Discrete software models for code generation, but with
complex operations

• Library functions in binary code
13

Automotive Environment

• Highly varied environments, e.g., road topology, weather, building and
pedestrians …

• Huge number of possible scenarios, e.g., determined by trajectories of
pedestrians and cars

• ADAS play an increasingly critical role

• A challenge for testing

14

Testing Advanced Driver
Assistance Systems

15

Objective

• Testing ADAS

• Identify and characterize most
critical/risky scenarios

• Test oracle: Safety properties

• Need scalable test strategy due to
large input space

16

17

Automated Emergency Braking
System (AEB)

17

“Brake-request”
when braking is needed
to avoid collisions

Decision making

Vision
(Camera)

Sensor

Brake
Controller

Objects’
position/speed

Example Critical Situation

“AEB detects a pedestrian in front of the car with a high
degree of certainty, but an accident happens where the car
hits the pedestrian with a relatively high speed”

18

Testing ADAS

19

A simulator based on
physical/mathematical models

On-road testing

Simulation-based (model) testing

Model Testing ADAS

20

ADAS
(SUT)

Simulator (Matlab Simulink)

Matlab Simulink
 Model

▪ Physical plant (vehicle / sensors / actuators)
▪ Other cars
▪ Pedestrians
▪ Environment (weather / roads / traffic signs)

Test input

Test output

Time-stamped output

Physics-Based Simulations

21

Our Goal

• Developing an automated testing technique for ADAS

• To help engineers efficiently and effectively explore the
complex test input space of ADAS

• To identify critical (failure-revealing) test scenarios

• Characterization of input conditions that lead to most
critical situations

22

ADAS Testing Challenges

• Test input space is large, complex and multidimensional

• Explaining failures and fault localization are difficult

• Execution of physics-based simulation models is computationally
expensive

23

Test Inputs/Outputs

24

- intensity: Real
SceneLight

Dynamic
Object

1
- weatherType:
Condition

Weather

- fog
- rain
- snow
- normal

«enumeration»
Condition

- field of view:
Real

Camera
Sensor

RoadSide
Object

- roadType: RT
Road

1 - curved
- straight
- ramped

«enumeration»
RT

- v0: Real
Vehicle

- x0: Real

- y0: Real

- θ: Real
- v0: Real

Pedestrian

- x: Real
- y: Real

Position

1

*

1

*

1
1

- state: Boolean
Collision

Parked
Cars

Trees
- simulationTime:
Real
- timeStep: Real

Test Scenario

AEB

- certainty: Real
Detection

1
1

11

1
1

1
1

«positioned»

«uses»
1 1

- AWA

Output
Trajectory

Environment inputs
Mobile object inputs
Outputs

Our Solution: Learnable
Evolutionary Algorithms

è Machine-learning classification models are used to characterize failures
and guide the search towards critical test scenarios faster

25

Search for critical test
scenarios in the critical
regions, and help refine
classification models

Learn regions likely to
contain most critical
(failure) test scenarios

Searc
h

Machine-learning
Classification

Search-Based Software Testing
• Express test generation problem

as a search problem

• Search for test input data with
certain properties, i.e.,
constraints

• Non-linearity of software (if,
loops, …): complex,
discontinuous, non-linear
search spaces (Baresel)

• Many search algorithms
(metaheuristics), from local
search to global search, e.g.,
Hill Climbing, Simulated
Annealing and Genetic
Algorithms

Section IV discusses future directions for Search-Based
Software Testing, comprising issues involving execution
environments, testability, automated oracles, reduction of
human oracle cost and multi-objective optimisation. Finally,
Section V concludes with closing remarks.

II. SEARCH-BASED OPTIMIZATION ALGORITHMS

The simplest form of an optimization algorithm, and
the easiest to implement, is random search. In test data
generation, inputs are generated at random until the goal of
the test (for example, the coverage of a particular program
statement or branch) is fulfilled. Random search is very poor
at finding solutions when those solutions occupy a very small
part of the overall search space. Such a situation is depicted
in Figure 2, where the number of inputs covering a particular
structural target are very few in number compared to the
size of the input domain. Test data may be found faster
and more reliably if the search is given some guidance.
For meta-heurstic searches, this guidance can be provided
in the form of a problem-specific fitness function, which
scores different points in the search space with respect to
their ‘goodness’ or their suitability for solving the problem
at hand. An example fitness function is plotted in Figure
3, showing how - in general - inputs closer to the required
test data that execute the structure of interest are rewarded
with higher fitness values than those that are further away.
A plot of a fitness function such as this is referred to as the
fitness landscape. Such fitness information can be utilized by
optimization algorithms, such as a simple algorithm called
Hill Climbing. Hill Climbing starts at a random point in the
search space. Points in the search space neighbouring the
current point are evaluated for fitness. If a better candidate
solution is found, Hill Climbing moves to that new point,
and evaluates the neighbourhood of that candidate solution.
This step is repeated, until the neighbourhood of the current
point in the search space offers no better candidate solutions;
a so-called ‘local optima’. If the local optimum is not the
global optimum (as in Figure 3a), the search may benefit
from being ‘restarted’ and performing a climb from a new
initial position in the landscape (Figure 3b).

An alternative to simple Hill Climbing is Simulated
Annealing [22]. Search by Simulated Annealing is similar to
Hill Climbing, except movement around the search space is
less restricted. Moves may be made to points of lower fitness
in the search space, with the aim of escaping local optima.
This is dictated by a probability value that is dependent
on a parameter called the ‘temperature’, which decreases
in value as the search progresses (Figure 4). The lower
the temperature, the less likely the chances of moving to a
poorer position in the search space, until ‘freezing point’ is
reached, from which point the algorithm behaves identically
to Hill Climbing. Simulated Annealing is named so because
it was inspired by the physical process of annealing in
materials.

Input domain

portion of
input domain

denoting required
test data

randomly-generated
inputs

Figure 2. Random search may fail to fulfil low-probability test goals

Fi
tn

es
s

Input domain

(a) Climbing to a local optimum

Fi
tn

es
s

Input domain
(b) Restarting, on this occasion resulting in a climb to the global optimum

Figure 3. The provision of fitness information to guide the search with
Hill Climbing. From a random starting point, the algorithm follows the
curve of the fitness landscape until a local optimum is found. The final
position may not represent the global optimum (part (a)), and restarts may
be required (part (b))

Fi
tn

es
s

Input domain
Figure 4. Simulated Annealing may temporarily move to points of poorer
fitness in the search space

Fi
tn

es
s

Input domain
Figure 5. Genetic Algorithms are global searches, sampling many points
in the fitness landscape at once

“Search-Based Software Testing: Past, Present and Future”
Phil McMinn

Genetic Algorithm

26

Section IV discusses future directions for Search-Based
Software Testing, comprising issues involving execution
environments, testability, automated oracles, reduction of
human oracle cost and multi-objective optimisation. Finally,
Section V concludes with closing remarks.

II. SEARCH-BASED OPTIMIZATION ALGORITHMS

The simplest form of an optimization algorithm, and
the easiest to implement, is random search. In test data
generation, inputs are generated at random until the goal of
the test (for example, the coverage of a particular program
statement or branch) is fulfilled. Random search is very poor
at finding solutions when those solutions occupy a very small
part of the overall search space. Such a situation is depicted
in Figure 2, where the number of inputs covering a particular
structural target are very few in number compared to the
size of the input domain. Test data may be found faster
and more reliably if the search is given some guidance.
For meta-heurstic searches, this guidance can be provided
in the form of a problem-specific fitness function, which
scores different points in the search space with respect to
their ‘goodness’ or their suitability for solving the problem
at hand. An example fitness function is plotted in Figure
3, showing how - in general - inputs closer to the required
test data that execute the structure of interest are rewarded
with higher fitness values than those that are further away.
A plot of a fitness function such as this is referred to as the
fitness landscape. Such fitness information can be utilized by
optimization algorithms, such as a simple algorithm called
Hill Climbing. Hill Climbing starts at a random point in the
search space. Points in the search space neighbouring the
current point are evaluated for fitness. If a better candidate
solution is found, Hill Climbing moves to that new point,
and evaluates the neighbourhood of that candidate solution.
This step is repeated, until the neighbourhood of the current
point in the search space offers no better candidate solutions;
a so-called ‘local optima’. If the local optimum is not the
global optimum (as in Figure 3a), the search may benefit
from being ‘restarted’ and performing a climb from a new
initial position in the landscape (Figure 3b).

An alternative to simple Hill Climbing is Simulated
Annealing [22]. Search by Simulated Annealing is similar to
Hill Climbing, except movement around the search space is
less restricted. Moves may be made to points of lower fitness
in the search space, with the aim of escaping local optima.
This is dictated by a probability value that is dependent
on a parameter called the ‘temperature’, which decreases
in value as the search progresses (Figure 4). The lower
the temperature, the less likely the chances of moving to a
poorer position in the search space, until ‘freezing point’ is
reached, from which point the algorithm behaves identically
to Hill Climbing. Simulated Annealing is named so because
it was inspired by the physical process of annealing in
materials.

Input domain

portion of
input domain

denoting required
test data

randomly-generated
inputs

Figure 2. Random search may fail to fulfil low-probability test goals

Fi
tn

es
s

Input domain

(a) Climbing to a local optimum

Fi
tn

es
s

Input domain
(b) Restarting, on this occasion resulting in a climb to the global optimum

Figure 3. The provision of fitness information to guide the search with
Hill Climbing. From a random starting point, the algorithm follows the
curve of the fitness landscape until a local optimum is found. The final
position may not represent the global optimum (part (a)), and restarts may
be required (part (b))

Fi
tn

es
s

Input domain
Figure 4. Simulated Annealing may temporarily move to points of poorer
fitness in the search space

Fi
tn

es
s

Input domain
Figure 5. Genetic Algorithms are global searches, sampling many points
in the fitness landscape at once

Multiple Objectives: Pareto Front

27

Individual A Pareto
dominates individual B if
A is at least as good as B

in every objective
and better than B in at

least one objective.

Dominated by x

F1

F2

Pareto frontx

• A multi-objective optimization algorithm (e.g., NSGA II) must:
• Guide the search towards the global Pareto-Optimal front.
• Maintain solution diversity in the Pareto-Optimal front.

Our ADAS Testing
• We use decision tree classification models

• We use multi-objective search algorithm (NSGAII)

• Objective Functions:

• Each search iteration calls simulation to compute objective functions

• Input values required to perform the simulation:

28

1. Minimum distance between the pedestrian and the field of view
2. The car speed at the time of collision
3. The probability that the object detected is a pedestrian

Precipita-
tion

Fogginess Road
shape

Visibility
range

Car-speed Person-
speed

Person-
position

Person-
orientation

Decision Trees

29

Partition the input space into homogeneous regions

All points
Count 1200

“non-critical” 79%
“critical” 21%

“non-critical” 59%
“critical” 41%

Count 564 Count 636
“non-critical” 98%
“critical” 2%

Count 412
“non-critical” 49%
“critical” 51%

Count 152
“non-critical” 84%
“critical” 16%

Count 230 Count 182

vp
0 >= 7.2km/h vp

0 < 7.2km/h

✓p0 < 218.6� ✓p0 >= 218.6�

RoadTopology(CR = 5,
Straight,RH = [4� 12](m))

RoadTopology

(CR = [10� 40](m))

“non-critical” 31%
“critical” 69%

“non-critical” 72%
“critical” 28%

Genetic Evolution guided by
Classification

30

Initial input

Fitness
computation

Classification

Selection

Breeding

NSGAII-DT
1. Generate an initial representative set of input scenarios and run the simulator to
label each scenario as critical or non-critical
2. Build a decision tree model

critical
region

non-critical
region

non-critical
region

conditions yesno

critical scenario
non-critical scenario

conditions
yesno

3. Run the NSGAII search algorithm for
the elements inside each critical leaf

NSGAII

Mutation and
crossover

NDS

Select best
scenarios

The new scenarios
are added to the
initial population

4. Rebuild the
decision tree (step 2)
or stop the process

most critical
region

conditions yesno

conditions yesno

Region in the input space
that is likely to contain
more critical scenarios

Iterative Process

32

We focus on generating more scenario
s in the critical region, respecting the

conditions that lead to that region

We get a more refined decision tree
with more critical regions and more

homogeneous areas

All points
Count 3367

“non-critical” 58%
“critical” 42%

“non-critical” 43%
“critical” 57%

Count 2198 Count 1169
“non-critical” 88%
“critical” 12%

Count 338
“non-critical” 17%
“critical” 83%

Count 1860
“non-critical” 47%
“critical” 53%

“non-critical” 42%
“critical” 58%

Count 1438 Count 422
“non-critical” 64%
“critical” 36%

Count 553
“non-critical” 29%
“critical” 71%

Count 885
“non-critical” 51%
“critical” 49%

“non-critical” 37%
“critical” 63%

Count 548 Count 337
“non-critical” 73%
“critical” 27%

x

p
0 >= 37.4 ^ RoadTopology

(Straight,

RH = [4� 12])

x

p
0 < 37.4^RoadTopology

(Straight,

✓p0 < 232.5�✓p0 >= 232.5�

x

p
0 < 33x

p
0 >= 33

✓p0 >= 185.6�✓p0 < 185.6�

yp
0 < 57.7yp

0 >= 57.7

^

^

^^

^

^ RoadTopology

RoadTopology

RoadTopology

RoadTopology

RoadTopology

RoadTopology

(Straight,

(CR = [5� 40])

(CR = [5� 40])

(CR = [5� 40])

(CR = [5� 40])

(Straight,

CR = [5� 40],

CR = [5� 40])

CR = [5� 40])

CR = [5� 40])

Initial Classification Model Refined Classification Model

All points
Count 1200

“non-critical” 79%
“critical” 21%

“non-critical” 59%
“critical” 41%

Count 564 Count 636
“non-critical” 98%
“critical” 2%

Count 412
“non-critical” 49%
“critical” 51%

Count 152
“non-critical” 84%
“critical” 16%

Count 230 Count 182

vp
0 >= 7.2km/h vp

0 < 7.2km/h

✓p0 < 218.6� ✓p0 >= 218.6�

RoadTopology(CR = 5,
Straight,RH = [4� 12](m))

RoadTopology

(CR = [10� 40](m))

“non-critical” 31%
“critical” 69%

“non-critical” 72%
“critical” 28%

Research Questions

• RQ1: Does the decision tree technique help guide the
evolutionary search and make it more effective?

• RQ2: Does our approach help characterize and converge
towards homogeneous critical regions?

• Failure explanation

• Usefulness (feedback from engineers)

33

RQ1: NSGAII-DT vs. NSGAII

34

NSGAII-DT outperforms NSGAII

H
V

0.0

0.4

0.8

G
D

0.05

0.15

0.25

SP

2
0.6

1.0

1.4

6 10 14 18 22 24
Time (h)

NSGAII-DT
NSGAII

RQ1: NSGAII-DT vs. NSGAII

• NSGAII-DT generates 78% more distinct, critical test
scenarios compared to NSGAII

35

RQ2: NSGAII-DT (evaluation of the
generated decision trees)

36

G
oo

dn
es

sO
fF
it

R
eg

io
nS

iz
e

1 5 642 3
0.40

0.50

0.60

0.70

tree generations

(b)
 0.80

71 5 642 3
0.00

0.05

0.10

0.15

tree generations

(a)
 0.20

7

G
oo

dn
es

sO
fF
it
-c
rt

1 5 642 3

0.30

0.50

0.70

tree generations

(c)
 0.90

7

The generated critical regions consistently become smaller, more
homogeneous and more precise over successive tree generations of

NSGAII-DT

50m

76m

36m32m

θ
[15m-40m]

vehicle
speed > 36km/h

pedestrian
speed < 6km/h

Failure explanation

• A characterization of the input space showing under what
input conditions the system is likely to fail

37

• Visualized by decision trees
or dedicated diagrams

• Path conditions in trees

road sidewalk

Usefulness

• The characterizations of the different critical regions can help
with:

(1) Debugging the system model (or the simulator)

(2) Identifying possible hardware changes to increase
ADAS safety

(3) Providing proper warnings to drivers
38

Automated Testing of
Feature Interactions Using

Many Objective Search

39

System Integration

40

actuators

sensors

feature n

feature 2

feature 1

 Integration
component

System Under Test (SUT)

...
cameras

Case Study: SafeDrive
• Our case study describes an automotive system consisting of

four advanced driver assistance features:

• Cruise Control (ACC)

• Traffic Sign Recognition (TSR)

• Pedestrian Protection (PP)

• Automated Emergency Breaking (AEB)

41

Simulation

42

SUT

Simulator
Ego Vehicule

(physical plant)

Pedestrians

Other
Vehicules

- Road
- Traffic sign
- Weather

Outputs
Time-stamped vectors for:
- the SUT outputs
- the states of the physical
plant and the mobile
environment objects

sensors

cameras

actuators

Environment

mobile objects

static aspects

Dynamic
models

Inputs
- the initial state of the
physical plant and the
mobile environment
objects
- the static environment
aspects

Feedback loop

Actuator Command Vectors

43

Safety Requirements

44

Features
• Behavior of features based on machine learning algorithms processing sensor

and camera data

• Interactions between features may lead to violating safety requirements, even if
features are correct

• E.g., ACC is controlling the car by ordering it to accelerate since the leading car
is far away, while a pedestrian starts crossing the road. PP starts sending
braking commands to avoid hitting the pedestrian.

• Complex: predict and analyze possible interactions at the requirements level in a
complex environment

• Resolution strategies cannot always be determined statically and may depend on
environment

45

Objective

• Automated and scalable testing to help ensure that resolution
strategies are safe

• Detect undesired feature interactions

• Assumptions: IntC is white-box (integrator is testing), features
were previously tested

46

Input Variables

47

Search
• Input space is very large

• Dedicated search algorithm (many objectives) directed/guided by
test objectives (fitness functions)

• Fitness (distance) functions: reward test cases that are more
likely to reveal integration failures leading to safety violations

• Combine three types of functions: (1) safety violations, (2) unsafe
overriding by integration component (IntC), (3) coverage of the
decision structure of IntC

• Many test objectives to be satisfied by the test suite

48

Failure Distance

• Goal: Reveal safety requirements violations

• Fitness functions based on the trajectory vectors for
the ego car, the leading car and the pedestrian,
generated by the simulator

• PP fitness: Minimum distance between the car and
the pedestrian during the simulation time.

• AEB fitness: Minimum distance between the car and
the leading car during the simulation time.

49

Distance Functions

50

When any of the functions yields zero,
a safety failure corresponding to

that function is detected.

Unsafe Overriding Distance

• Goal: Find faults faults in integration component

• Reward test cases generating integration outputs deviating
from the individual feature outputs, in such a way as to
possibly lead to safety violations.

• Example: A feature f issues a braking command while the
integration component issues no braking command or a
braking command with a lower force than that of f .

51

Branch Distance

• Many decision branches in IntC

• Branch coverage of IntC

• Fitness: Approach level and branch
distance d (standard for code
coverage)

• d(b,tc) = 0 when tc covers b

52

Combining Distance Functions
• Goal: Execute every branch of IntC such that while executing

that branch, IntC unsafely overrides every feature f and its
outputs violate every safety requirement related to f.

53

Indicates that tc has not covered branch j

Branch covered but did not cause unsafe override of f

Branch covered, unsafe override, but did not
violate requirement I

Search Algorithm
• Best test suite covers all search objectives, i.e., for all IntC

branches and all safety requirements

• Not a Pareto front optimization problem

• Objectives compete with each others for each test case

• Example: cannot have the ego car violating the speed limit after
hitting the leading car in one test case

• Tailored, many-objective genetic algorithm

• Must be efficient (test case executions are very expensive)

54

Search Algorithm

55

Randomly generated TCs
Compute fitness

Tests are evolved
Crossover, mutation

Fittest tests selected

Correct constraint violations

Archive covering tests

Evaluation

56

2

0

4 6 8 10 12

1

2

3

4

5

6

7
FITest

 Baseline

Time (h)

N
um

be
r o

f I
nt

eg
ra

tio
n

er
ro

rs

Discussion

57

Observations
• We are unlikely to have precise and complete requirements, we

face great diversity in the physical environment, including many
possible scenarios.

• It is possible, however, to define properties characterizing
unacceptable situations (safety)

• Notion of test coverage is elusive: No specification or
code/models for some key (decision) components based on ML

• We have executable/simulable functional models (e.g., Simulink)
at early stages

58

Conclusions
• We proposed solutions based on:

• Efficient and realistic (hardware, physics) simulation

• Metaheuristic search, e.g., evolutionary computing

• Guided by fitness functions derived from properties of interest
(e.g., safety requirements)

• Machine learning, e.g., to speed up search, provide
explanations to engineers

• No guarantees though

59

Generalizing

• Our work easily generalizes to many other cyber-physical
systems

• Can a similar strategy be applied in other domains to test
for bias or any other undesirable properties (e.g., legal),
when system behavior is driven by machine learning?

• Executable models of environment and users?

60

Summary
• Machine learning plays an increasingly prominent role in

autonomous systems

• No (complete) requirements, specifications, or even code

• Some safety and mission-critical requirements

• Neural networks (deep learning) with millions of weights

• How do we gain confidence in such software in a scalable
and cost-effective way?

61

Related Testing Research

• Testing of hybrid controllers

• Testing timeliness requirements

• Testing for deadline misses (schedulability)

• HiL acceptance testing prioritization

• Testing for security vulnerabilities

• Find publications on: svv.lu
62

Acknowledgements

• Raja Ben Abdessalem

• Shiva Nejati

• Annibale Panichella

• IEE, Luxembourg

63

References

• R. Ben Abdessalem et al., "Testing Advanced Driver
Assistance Systems Using Multi-Objective Search and
Neural Networks”, IEEE ASE 2016

• R. Ben Abdessalem et al., "Testing Vision-Based Control
Systems Using Learnable Evolutionary Algorithms”,
IEEE/ACM ICSE 2018

64

.lu
software verification & validation
VVS

Automated Testing
of Autonomous Driving Assistance

Systems

Lionel Briand

SEMLA, Montreal, 2018

