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Collaborative Research @ SnT
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• Research in context
• Addresses actual needs
• Well-defined problem
• Long-term collaborations
• Our lab is the industry



Software Verification and 
Validation @ SnT Centre
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• Group established in 2012

• Focus: Automated, novel, cost-
effective V&V solutions

• ERC Advanced Grant

• ~ 25 staff members

• Industry and public partnerships



Introduction
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Cyber-Physical Systems
• A system of collaborating computational elements controlling 

physical entities
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Autonomous CPS

• Read sensors, i.e., collect data about their environment

• Make predictions about their environment

• Make (optimal) decisions about how to behave to achieve 
some objective(s) based on predictions

• Send commands to actuators according to decisions

• Often mission or safety critical
6



Advanced Driver Assistance 
Systems (ADAS)
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Automated Emergency Braking (AEB)

Pedestrian Protection (PP)

Lane Departure Warning (LDW)

Traffic Sign Recognition (TSR)



Advanced Driver Assistance 
Systems (ADAS)

Decisions are made over time based on sensor data
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Sensors
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Environment
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A General and Fundamental Shift
• Increasingly so, it is easier to learn behavior from data using 

machine learning, rather than specify and code

• Deep learning, reinforcement learning …

• Example: Neural networks (deep learning)

• Millions of weights learned

• No explicit code, no specifications

• Verification, testing?
9



Testing Implications

• Test oracles? No explicit, expected test behavior

• Test completeness? No source code, no specification
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CPS Development Process
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Functional modeling: 
• Controllers
• Plant
• Decision

Continuous and discrete 
Simulink models

Model simulation and 
testing

Architecture modelling
• Structure
• Behavior
• Traceability

System engineering modeling 
(SysML)

Analysis: 
• Model execution and 

testing
• Model-based testing
• Traceability and 

change impact 
analysis

• ...

(partial) Code generation

Deployed executables on 
target platform

Hardware (Sensors ...) 
Analog simulators 

Testing (expensive)

Hardware-in-the-Loop 
Stage

Software-in-the-Loop 
StageModel-in-the-Loop Stage



MiL Components

12

Sensor

Controller
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Opportunities and Challenges
• Early functional models (MiL) offer opportunities for early 

functional verification and testing 

• But a challenge for constraint solvers and model checkers:

• Continuous mathematical models, e.g., differential
equations

• Discrete software models for code generation, but with 
complex operations

• Library functions in binary code
13



Automotive Environment

• Highly varied environments, e.g., road topology, weather, building and 
pedestrians …

• Huge number of possible scenarios, e.g., determined by trajectories of 
pedestrians and cars

• ADAS play an increasingly critical role

• A challenge for testing

14



Testing Advanced Driver 
Assistance Systems
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Objective

• Testing ADAS

• Identify and characterize most 
critical/risky scenarios

• Test oracle: Safety properties

• Need scalable test strategy due to 
large input space

16



17

Automated Emergency Braking 
System (AEB)
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“Brake-request” 
when braking is needed 
to avoid collisions

Decision making

Vision
(Camera)

Sensor

Brake 
Controller

Objects’ 
position/speed



Example Critical Situation

“AEB detects a pedestrian in front of the car with a high
degree of certainty, but an accident happens where the car
hits the pedestrian with a relatively high speed”
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Testing ADAS
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A simulator based on 
physical/mathematical models

On-road testing

Simulation-based (model) testing



Model Testing ADAS
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ADAS
(SUT)

Simulator (Matlab Simulink)

Matlab Simulink
 Model

▪ Physical plant (vehicle / sensors / actuators)
▪ Other cars
▪ Pedestrians
▪ Environment (weather / roads / traffic signs)

Test input

Test output

Time-stamped output



Physics-Based Simulations
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Our Goal

• Developing an automated testing technique for ADAS 

• To help engineers efficiently and effectively explore the 
complex test input space of ADAS

• To identify critical (failure-revealing) test scenarios

• Characterization of input conditions that lead to most 
critical situations
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ADAS Testing Challenges

• Test input space is large, complex and multidimensional

• Explaining failures and fault localization are difficult

• Execution of physics-based simulation models is computationally 
expensive
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Test Inputs/Outputs
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Our Solution: Learnable 
Evolutionary Algorithms

è Machine-learning classification models are used to characterize failures 
and guide the search towards critical test scenarios faster
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Search for critical test 
scenarios in the critical 
regions, and help refine 
classification models

Learn regions likely to 
contain most critical 
(failure) test scenarios

Searc
h

Machine-learning
Classification



Search-Based Software Testing
• Express test generation problem 

as a search problem

• Search for test input data with 
certain properties, i.e., 
constraints

• Non-linearity of software (if, 
loops, …): complex, 
discontinuous, non-linear 
search spaces (Baresel)

• Many search algorithms 
(metaheuristics), from local 
search to global search, e.g., 
Hill Climbing, Simulated 
Annealing and Genetic 
Algorithms 

Section IV discusses future directions for Search-Based
Software Testing, comprising issues involving execution
environments, testability, automated oracles, reduction of
human oracle cost and multi-objective optimisation. Finally,
Section V concludes with closing remarks.

II. SEARCH-BASED OPTIMIZATION ALGORITHMS

The simplest form of an optimization algorithm, and
the easiest to implement, is random search. In test data
generation, inputs are generated at random until the goal of
the test (for example, the coverage of a particular program
statement or branch) is fulfilled. Random search is very poor
at finding solutions when those solutions occupy a very small
part of the overall search space. Such a situation is depicted
in Figure 2, where the number of inputs covering a particular
structural target are very few in number compared to the
size of the input domain. Test data may be found faster
and more reliably if the search is given some guidance.
For meta-heurstic searches, this guidance can be provided
in the form of a problem-specific fitness function, which
scores different points in the search space with respect to
their ‘goodness’ or their suitability for solving the problem
at hand. An example fitness function is plotted in Figure
3, showing how - in general - inputs closer to the required
test data that execute the structure of interest are rewarded
with higher fitness values than those that are further away.
A plot of a fitness function such as this is referred to as the
fitness landscape. Such fitness information can be utilized by
optimization algorithms, such as a simple algorithm called
Hill Climbing. Hill Climbing starts at a random point in the
search space. Points in the search space neighbouring the
current point are evaluated for fitness. If a better candidate
solution is found, Hill Climbing moves to that new point,
and evaluates the neighbourhood of that candidate solution.
This step is repeated, until the neighbourhood of the current
point in the search space offers no better candidate solutions;
a so-called ‘local optima’. If the local optimum is not the
global optimum (as in Figure 3a), the search may benefit
from being ‘restarted’ and performing a climb from a new
initial position in the landscape (Figure 3b).

An alternative to simple Hill Climbing is Simulated
Annealing [22]. Search by Simulated Annealing is similar to
Hill Climbing, except movement around the search space is
less restricted. Moves may be made to points of lower fitness
in the search space, with the aim of escaping local optima.
This is dictated by a probability value that is dependent
on a parameter called the ‘temperature’, which decreases
in value as the search progresses (Figure 4). The lower
the temperature, the less likely the chances of moving to a
poorer position in the search space, until ‘freezing point’ is
reached, from which point the algorithm behaves identically
to Hill Climbing. Simulated Annealing is named so because
it was inspired by the physical process of annealing in
materials.
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Figure 2. Random search may fail to fulfil low-probability test goals
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Figure 3. The provision of fitness information to guide the search with
Hill Climbing. From a random starting point, the algorithm follows the
curve of the fitness landscape until a local optimum is found. The final
position may not represent the global optimum (part (a)), and restarts may
be required (part (b))
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Figure 4. Simulated Annealing may temporarily move to points of poorer
fitness in the search space
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Figure 5. Genetic Algorithms are global searches, sampling many points
in the fitness landscape at once

“Search-Based Software Testing: Past, Present and Future” 
Phil McMinn

Genetic Algorithm
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Section IV discusses future directions for Search-Based
Software Testing, comprising issues involving execution
environments, testability, automated oracles, reduction of
human oracle cost and multi-objective optimisation. Finally,
Section V concludes with closing remarks.

II. SEARCH-BASED OPTIMIZATION ALGORITHMS

The simplest form of an optimization algorithm, and
the easiest to implement, is random search. In test data
generation, inputs are generated at random until the goal of
the test (for example, the coverage of a particular program
statement or branch) is fulfilled. Random search is very poor
at finding solutions when those solutions occupy a very small
part of the overall search space. Such a situation is depicted
in Figure 2, where the number of inputs covering a particular
structural target are very few in number compared to the
size of the input domain. Test data may be found faster
and more reliably if the search is given some guidance.
For meta-heurstic searches, this guidance can be provided
in the form of a problem-specific fitness function, which
scores different points in the search space with respect to
their ‘goodness’ or their suitability for solving the problem
at hand. An example fitness function is plotted in Figure
3, showing how - in general - inputs closer to the required
test data that execute the structure of interest are rewarded
with higher fitness values than those that are further away.
A plot of a fitness function such as this is referred to as the
fitness landscape. Such fitness information can be utilized by
optimization algorithms, such as a simple algorithm called
Hill Climbing. Hill Climbing starts at a random point in the
search space. Points in the search space neighbouring the
current point are evaluated for fitness. If a better candidate
solution is found, Hill Climbing moves to that new point,
and evaluates the neighbourhood of that candidate solution.
This step is repeated, until the neighbourhood of the current
point in the search space offers no better candidate solutions;
a so-called ‘local optima’. If the local optimum is not the
global optimum (as in Figure 3a), the search may benefit
from being ‘restarted’ and performing a climb from a new
initial position in the landscape (Figure 3b).

An alternative to simple Hill Climbing is Simulated
Annealing [22]. Search by Simulated Annealing is similar to
Hill Climbing, except movement around the search space is
less restricted. Moves may be made to points of lower fitness
in the search space, with the aim of escaping local optima.
This is dictated by a probability value that is dependent
on a parameter called the ‘temperature’, which decreases
in value as the search progresses (Figure 4). The lower
the temperature, the less likely the chances of moving to a
poorer position in the search space, until ‘freezing point’ is
reached, from which point the algorithm behaves identically
to Hill Climbing. Simulated Annealing is named so because
it was inspired by the physical process of annealing in
materials.
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in the fitness landscape at once



Multiple Objectives: Pareto Front
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Individual A Pareto 
dominates individual B if
A is at least as good as B 

in every objective 
and better than B in at 

least one objective.

Dominated by x

F1

F2

Pareto frontx

• A multi-objective optimization algorithm (e.g., NSGA II) must:
• Guide the search towards the global Pareto-Optimal front.
• Maintain solution diversity in the Pareto-Optimal front.



Our ADAS Testing
• We use decision tree classification models 

• We use multi-objective search algorithm (NSGAII)

• Objective Functions: 

• Each search iteration calls simulation to compute objective functions

• Input values required to perform the simulation:
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1. Minimum distance between the pedestrian and the field of view
2. The car speed at the time of collision
3. The probability that the object detected is a pedestrian

Precipita-
tion

Fogginess Road 
shape

Visibility
range

Car-speed Person-
speed

Person-
position

Person-
orientation



Decision Trees
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Partition the input space into homogeneous regions

All points 
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Genetic Evolution guided by 
Classification
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Initial input

Fitness 
computation

Classification

Selection

Breeding



NSGAII-DT
1. Generate an initial representative set of input scenarios and run the simulator to 
label each scenario as critical or non-critical
2. Build a decision tree model 

critical
region

non-critical
region

non-critical
region

conditions yesno

critical scenario
non-critical scenario

conditions
yesno

3. Run the NSGAII search algorithm for 
the elements inside each critical leaf

NSGAII

Mutation and 
crossover

NDS

Select best 
scenarios

The new scenarios 
are added to the 
initial population

4. Rebuild the 
decision tree (step 2) 
or stop the process 

most critical
region

conditions yesno

conditions yesno

Region in the input space 
that is likely to contain 
more critical scenarios



Iterative Process
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We focus on generating more scenario
s in the critical region, respecting the    

conditions that lead to that region

We get a more refined decision tree 
with more critical regions and more 

homogeneous areas
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Research Questions

• RQ1: Does the decision tree technique help guide the 
evolutionary search and make it more effective? 

• RQ2: Does our approach help characterize and converge 
towards homogeneous critical regions? 

• Failure explanation 

• Usefulness (feedback from engineers)

33



RQ1: NSGAII-DT vs. NSGAII
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NSGAII-DT outperforms NSGAII
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RQ1: NSGAII-DT vs. NSGAII

• NSGAII-DT generates 78% more distinct, critical test 
scenarios compared to NSGAII
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RQ2: NSGAII-DT (evaluation of the 
generated decision trees) 
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The generated critical regions consistently become smaller, more 
homogeneous and more precise over successive tree generations of 

NSGAII-DT



50m

76m

36m32m

θ
[15m-40m]

vehicle 
speed > 36km/h

pedestrian 
speed < 6km/h

Failure explanation

• A characterization of the input space showing under what 
input conditions the system is likely to fail
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• Visualized by decision trees 
or dedicated diagrams

• Path conditions in trees

road sidewalk



Usefulness

• The characterizations of the different critical regions can help 
with:

(1) Debugging the system model (or the simulator)

(2) Identifying possible hardware changes to increase 
ADAS safety

(3) Providing proper warnings to drivers
38



Automated Testing of 
Feature Interactions Using 

Many Objective Search 
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System Integration
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Case Study: SafeDrive
• Our case study describes an automotive system consisting of 

four advanced driver assistance features:

• Cruise Control (ACC)

• Traffic Sign Recognition (TSR)

• Pedestrian Protection (PP)

• Automated Emergency Breaking (AEB)
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Simulation 

42

SUT

Simulator
Ego Vehicule

(physical plant)

Pedestrians

Other 
Vehicules

- Road
- Traffic sign
- Weather

Outputs
Time-stamped vectors for: 
- the SUT outputs 
- the states of the physical 
plant and the mobile 
environment objects

sensors

cameras

actuators

Environment

mobile objects

static aspects

Dynamic 
models

Inputs
- the initial state of the 
physical plant and the 
mobile environment 
objects
- the static environment 
aspects

Feedback loop



Actuator Command Vectors
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Safety Requirements
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Features
• Behavior of features based on machine learning algorithms processing sensor 

and camera data

• Interactions between features may lead to violating safety requirements, even if 
features are correct

• E.g., ACC is controlling the car by ordering it to accelerate since the leading car 
is far away, while a pedestrian starts crossing the road. PP starts sending 
braking commands to avoid hitting the pedestrian.

• Complex: predict and analyze possible interactions at the requirements level in a 
complex environment

• Resolution strategies cannot always be determined statically and may depend on 
environment
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Objective

• Automated and scalable testing to help ensure that resolution 
strategies are safe 

• Detect undesired feature interactions

• Assumptions: IntC is white-box (integrator is testing), features 
were previously tested
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Input Variables
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Search
• Input space is very large

• Dedicated search algorithm (many objectives) directed/guided by 
test objectives (fitness functions)

• Fitness (distance) functions: reward test cases that are more 
likely to reveal integration failures leading to safety violations

• Combine three types of functions: (1) safety violations, (2) unsafe 
overriding by integration component (IntC), (3) coverage of the 
decision structure of IntC

• Many test objectives to be satisfied by the test suite
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Failure Distance

• Goal: Reveal safety requirements violations

• Fitness functions based on the trajectory vectors for 
the ego car, the leading car and the pedestrian, 
generated by the simulator

• PP fitness: Minimum distance between the car and 
the pedestrian during the simulation time.

• AEB fitness: Minimum distance between the car and 
the leading car during the simulation time.
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Distance Functions
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When any of the functions yields zero, 
a safety failure corresponding to 

that function is detected.



Unsafe Overriding Distance

• Goal: Find faults faults in integration component 

• Reward test cases generating integration outputs deviating
from the individual feature outputs, in such a way as to 
possibly lead to safety violations.  

• Example: A feature f issues a braking command while the 
integration component issues no braking command or a 
braking command with a lower force than that of f .
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Branch Distance

• Many decision branches in IntC

• Branch coverage of IntC

• Fitness: Approach level and branch 
distance d (standard for code 
coverage)

• d(b,tc) = 0 when tc covers b
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Combining Distance Functions
• Goal: Execute every branch of IntC such that while executing 

that branch, IntC unsafely overrides every feature f and its 
outputs violate every safety requirement related to f. 
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Indicates that tc has not covered branch j

Branch covered but did not cause unsafe override of f

Branch covered, unsafe override, but did not 
violate requirement I



Search Algorithm
• Best test suite covers all search objectives, i.e., for all IntC

branches and all safety requirements

• Not a Pareto front optimization problem

• Objectives compete with each others for each test case

• Example: cannot have the ego car violating the speed limit after 
hitting the leading car in one test case

• Tailored, many-objective genetic algorithm

• Must be efficient (test case executions are very expensive)
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Search Algorithm
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Randomly generated TCs
Compute fitness

Tests are evolved
Crossover, mutation

Fittest tests selected

Correct constraint violations

Archive covering tests



Evaluation
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Discussion
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Observations
• We are unlikely to have precise and complete requirements, we 

face great diversity in the physical environment, including many 
possible scenarios.

• It is possible, however, to define properties characterizing 
unacceptable situations (safety)

• Notion of test coverage is elusive: No specification or 
code/models for some key (decision) components based on ML

• We have executable/simulable functional models (e.g., Simulink) 
at early stages 
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Conclusions
• We proposed solutions based on: 

• Efficient and realistic (hardware, physics) simulation

• Metaheuristic search, e.g., evolutionary computing

• Guided by fitness functions derived from properties of interest 
(e.g., safety requirements)

• Machine learning, e.g., to speed up search, provide 
explanations to engineers

• No guarantees though
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Generalizing

• Our work easily generalizes to many other cyber-physical 
systems

• Can a similar strategy be applied in other domains to test 
for bias or any other undesirable properties (e.g., legal), 
when system behavior is driven by machine learning?

• Executable models of environment and users?
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Summary
• Machine learning plays an increasingly prominent role in 

autonomous systems

• No (complete) requirements, specifications, or even code

• Some safety and mission-critical requirements

• Neural networks (deep learning) with millions of weights

• How do we gain confidence in such software in a scalable 
and cost-effective way?
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Related Testing Research

• Testing of hybrid controllers

• Testing timeliness requirements

• Testing for deadline misses (schedulability)

• HiL acceptance testing prioritization

• Testing for security vulnerabilities 

• Find publications on: svv.lu
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