
The Research Challenges of
the ERC Project PRECRIME

Paolo Tonella
Fondazione Bruno Kessler

Trento - Italy

Outline

 2

1. Motivating scenarios

2. PRECRIME
- Goals
- Challenges
- Approach

3. Building blocks
- Oracle quality
- Evolutionary testing

4. Conclusion

Land of AI-based systems

 3

Impact on all sectors
of our society:
- Mobility
- Industry
- Finance
- Services
- Entertainment

How can we test effectively and efficiently
AI based systems?

Autonomous driving

 4

Testing issues:
- Simulation is slow
- Field testing is extremely

expensive
- World model instances grow

combinatorially
- Code coverage is not always

an appropriate adequacy
criterion

- Test scenarios should be at
the same time realistic and
extreme

Adversarial testing

 5

Xiaowei Huang, Marta Kwiatkowska, Sen Wang, Min Wu. Safety Verification of Deep Neural
Networks. CAV 2017: 3-29

One-pixel change
- two player game
- Monte Carlo tree search

Adversarial testing

 6

K. Pei, Y. Cao, J. Yang, and S. Jana. DeepXplore: Automated whitebox testing of deep
learning systems. SOSP 2017

DeepXplore:
- max neuron coverage
- max differential behaviours
- gradient ascent optimization

Adversarial testing

 7

Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, Sarfraz Khurshid. DeepRoad:
GAN-based Metamorphic Autonomous Driving System Testing. arXiv:1802.02295

DeepRoad
- map image from

source domain to latent
domain

- generate image in the
new domain from latent
domain

Given such adversarial examples, how do
we know if they may affect any real

execution scenario?

Financial bots

 8

Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, Aquinas Hobor. Making Smart
Contracts Smarter. CCS 2016: 254-269

withdrawBalance is not
reentrant:
- The default function value of the

sender may call
withdrawBalance again,
causing a double transfer of
money

- The recent TheDao hack
exploited a reentrancy
vulnerability to steal around 60
M$ from Ethereum

- A malicious bot may easily
discover and trigger such
reentrant calls

Financial bots

 9

Algorithmic pricing
Algo 1:
1% discount over min price

Algo 2:
27% extra cost for higher
reliability and better
services

How do we test a society of intelligent bots
so as to rule out undesirable emergent

behaviours?

Test challenges

 10

- Latent bugs and in-field misbehaviours are unavoidable
- Existing adequacy criteria are not sufficient
- Runtime monitoring for fail-safe execution becomes

essential
- Realistic, yet extreme, scenarios should be generated for

testing
- Anomalies and unexpected execution contexts should be

detected at run time

Many activities traditionally conducted
during offline/pre-release testing must be

moved online/post-release

Is it still software testing?

 11

NO: no bug in the code
- Code implementing DNN is correct
- Learnt behaviours might be incorrect

even if the learning algorithm is
implemented correctly

goals

(implicit)
utility/quality

functions
TEST OBJECTIVES

YES: implementation deviates from
intended behaviour
- Issue fixing might involve DNN

retraining
- Training data and learning algorithms

might be the fault, rather than just
contain the fault

 12

PRECRIME

Project

 13

Facts:
- Funded by the European Research Council under the Advanced Grant

programme
- Will start in Jan 2019; last for 5 years
- Team composed of 10 people (PI, 4 Postdocs, 4 PhD Students, 1 Technologist)
- Website: pre-crime.eu

Self Assessment Oracles for Anticipatory Testing

http://pre-crime.eu

Inspiration

 14

Philip K. Dick. The Minority Report. Fantastic Universe, 1956
Minority Report. Directed by Steven Spielberg; featuring Tom Cruise, Colin
Farrell, Samantha Morton, Max von Sydow, 2002

- Precrime, police agency that
blocks and imprison
murderers before they commit
crime

- Precogs, mutants endowed
with the ability to see future
events before they happen

MINORITY REPORT

Precogs = self-assessment oracle
Precrime agency = anticipatory testing & patch synthesis

Goal

 15

PRECRIME aims at preventing the occurrence of failures in unexpected
execution contexts by identifying new, possibly error prone, contexts

Self-assessment
oracle

Anticipatory
test generation

Monitoring Low
confidence

Patch
synthesis

Passing/failing
test cases

Patch
release

Challenges

 16

Challenge 1 (Self-assessment oracle): How to estimate the system’s
confidence even before correctness of execution can be evaluated?

Challenge 2 (Context aware test case generation): How to define a
novel, context aware test adequacy criterion, based on a model of the
evolving execution context, so that test cases derived from such a
model achieve high execution confidence?

Challenge 3 (Property adaptation): How to assess the fault detection
capability of currently available properties when used in a newly
identified context (or state) and how to adapt them so that they can
effectively detect misbehaviours of the system in a new context?

Challenge 4 (Patch synthesis): How to synthesize a dependable patch
that can bring the system to a high confidence?

Ideas

 17

PRECRIME will make use of:

- Self-assessment oracle. A self-assessment oracle is an estimator of the
system’s confidence in being able to handle a given execution context
correctly.

confidence = (1 – novelty) • (1 – failure probability)

- Anticipatory test generator. Anticipatory testing aims at the creation of test
cases that target a new execution context for which the self-assessment
oracle reports a low confidence level.

Objectives

 18

Objective 3 (context-aware test generator): Generate new test cases
focused on the inadequately tested aspects of a new execution context.

Objective 2 (context model): Abstract a new execution context and
system state into a data and behavioural model that can be compared
against previously executed/tested context models.

Objective 1 (self-assessment oracle): Define a confidence metric, to
measure the confidence of the system in handling a new execution
context, and create a self–assessment oracle that can measure
confidence.

Objective 4 (property adaptation): Identify deficiencies in available
system properties when applied to a new execution context and
determine candidate adaptations that make such system properties
suitable to act as functional correctness assertions in the new context.

Objective 5 (patch synthesis): Synthesize a candidate patch for a fault
exposed by anticipatory testing.

Approach

 19

Self-assessment
oracle

Anticipatory
test generation

Property
adaptation

Monitoring Low
confidence

System
properties

Patch
synthesis

Patch
strengthening

Fault
detection

Passing/failing
test cases

Patch
release

Unexpected execution context

Novelty
detection

Context
model

Context
abstraction

Property
adequacy

Deficiency
elimination

Patch
validation

New
context New

properties

Workpackages

 20

WP2: context analysis
and self-assessment

WP4: program
properties WP3: test generation

WP5: program repair

Execution
traces

Self-
assessment

oracle

Context
model

Candidate
patch

Program
properties

Test cases

Anticipatory testing
WP1: theoretical foundations

WP6: empirical validation

Building blocks

 21

- Statistics and information theory (theoretical framework of self-
assessment oracles)

- Model inference (context modeling)
- Machine learning (confidence estimation)
- Evolutionary testing (test generation)
- Constraint solving (test generation)
- Oracle quality (property adaptation)
- Genetic programming, program transformation (patch synthesis)
- Fault localization, symbolic execution (patch constraints)

 22

Oracle quality

Gunel Jahangirova, David Clark, Mark Harman, Paolo Tonella. Test oracle assessment
and improvement. ISSTA 2016: 247-258

Oracle deficiencies

 23

public class Subtract {
 public double value(double x, double y) {
 double result = x-y;
 assert (result != x);
 assert (result == x-y);
 return result;
 }
}

public class FastMath {
public int max(int a, int b) {

int max;
if (a >= b) {

max = a;
} else {

max = b; // max = a;
}
assert (max >= a);
return max;

}
}

Fa
lse

 al
arm

Oracles may be too strong (false alarms) or too weak (missed faults)

Missed fault

False positives and false negatives

 24

TC=(0, 0)
False positive: program state
where the assertion fails, although
such state respects the intended
program behaviour

TC=(0, 1)
False negative: program state
where the assertion passes,
although such state violates the
intended program behaviour

public class Subtract {
 public double value(double x, double y) {
 double result = x-y;
 assert (result != x);
 assert (result == x-y);
 return result;
 }
}

public class FastMath {
public int max(int a, int b) {

int max;
if (a >= b) {

max = a;
} else {

max = b; // max = a;
}
assert (max >= a);
return max;

}
}

Oracle improvement process

 25

Oracle assessment and improvement

Manual&
refinement

Test&case&generation

Mutation&analysis

False&positives

False&negatives

Re
fin

e
Assess

Initial&oracle

Implicit&oracle

Manual&oracle

Inferred&properties

Oracle deficiency detection

 26

public class Subtract {
public double value(double x, double y) {

double result = x - y;
assert (result != x);
assert (result == x - y);
return result;

}
}

@Test
public void test1() throws Throwable {

Subtract subtract0 = new Subtract();
try {

subtract0.value(0.0, 0.0);
fail();

} catch (Exception e) {
}

}

public class FastMath {
public int max(int a, int b) {

int max;
if (a >= b) {

max = a;
} else {

max = b; // max = a;
}
assert (max >= a);
return max;

}
}

@Test
/* Strong mutation L:5: // max = a; */
public void test2() throws Throwable {

FastMath fastmath0 = new FastMath();
int int0 = fastmath0.max(0, 1);
int orig0 = 1;
assertEquals(int0, orig0);

}

assert (max >= b);

Use in Precrime

 27

Objective 4 (property adaptation): Identify deficiencies in available
system properties when applied to a new execution context and
determine candidate adaptations that make such system properties
suitable to act as functional correctness assertions in the new context.

 28

Evolutionary testing

Cu D. Nguyen, Simon Miles, Anna Perini, Paolo Tonella, Mark Harman, Michael
Luck: Evolutionary testing of autonomous software agents. Journal of
Autonomous Agents and Multi-Agent Systems, vol. 25, n. 2, pp. 260-283 2012.

Autonomous cleaner robot

 29

Stakeholder

Robustness

Keep the airport
clean

Efficiency

Legends Goal
Actor

softgoal dependence

Robustness

+contribution

Keep the airport
clean

Efficiency

+ +
Maintaining
battery

Avoiding
obstacle

Safely stop

Battery loaded

Looking for waste

Looking for
charging station

Environment
monitored

Dropping waste

Recharging

decomposition

+

+

Cleaner
Agent

- Quality functions are derived from
the agent goals
- Maintaining battery
- Avoiding obstacle

- Evolutionary testing generates test
scenarios that exhibit poor quality
levels

Evolutionary world creation

 30

Initial	world	
instances

Execution	&	
fitness	eval

SelectionReproduction

World
Model

Quality
functions

SIMULATION

Single vs. multiple fitness functions:
• Maintain battery: world instances where recharging is difficult
• Avoid obstacles: world instances where paths through obstacles are narrow

and difficult to take
• Maintain battery and Avoid obstacles: world instances where low power

consumption and obstacle avoidance conflict with each other

World model

 31

Obstacle

Waste

Charging
station

Wastebin <x1, y1, x2, y2>

<x1, y1, x2, y2>

<x1, y1, …, xNo, yNo>

<x1, y1, …, xNw, yNw>

Evolutionary world creator

 32

Initial	world	
instances

Execution	&	
fitness	eval

SelectionReproduction

Chromosome:
<<x1, y1, x2, y2>, <x1, y1, x2, y2>, <x1, y1, …, xNo, yNo>, <x1, y1, …, xNw, yNw>>

Fitness functions:
fpower = 1 / Total power consumption
fobs = 1 / Number of obstacles encountered

Population size 30

Max generations 100

Mutation probability 3%

Crossover probability 90%

A world with min fobs

 33

High probability of crashing into an obstacle after reaching wastebin #0.

A world with min fpower

 34

Waste items near the corners increase battery consumption.

A world with min fobs, fpower

 35

Waste items near the corners increase battery consumption and obstacles
along the paths to the waste items increase the chances of collisions

Real fault

 36

� ������������	
��������������������
����������
����������
�������	�����
� ���	���������
�������	�������
� ���������
�����������	�����������
�������������������������
� ���������
��������� ��	�����
�������������������������
� ���������
��������� ������������
�������������������������
� ���������
��������� ����������
�������������������������
� �!��
�����	�
�	��
���
� ������
������	�
���	
����
�������
��
���
	��
���
�
���������
����� ���������	��
������������������������
	
 "��	�������#��������������
$	�%
�#�&

�

�����������
�� ����	����������
�� �!��
������
��
�������
����
���
�����
��
��	��
'()('*'�+,--./0�12,/3.#
���
�� �������������������
�� "��	�������#��������������
�
'�1��������#'()('*'�+,--./0�12,/3.
�� ��������������������
�� �!��
-��
���	
��
���������
����
���
������
�����
��
�#�#
���
�� �����������������
�� "��	�������#��������������
��
�#�
�	 ������������������
�
 �������������	�

A collision happens when:
1. the battery level drops below 3%;
2. there are nearby obstacles in the path of the agent.

The chance of detecting this fault with a single objective fitness function is very low,
while it is high when both quality functions are minimized.

Use in Precrime

 37

Objective 3 (context-aware test generator): Generate new test cases
focused on the inadequately tested aspects of a new execution context.

Conclusion

 38

- Evolutionary and AI capabilities are granted to test generators, in order to
make them capable of testing autonomous, AI based systems.

- The test oracle becomes an adaptive, live artifact, whose deficiencies are
automatically detected and resolved.

- Self-assessment quantifies the likelihood of achievement of the AI system’s
goals in the given execution context.

- Online testing becomes a critical component of AI systems, due to the
huge amount of execution contexts that cannot be exercised a priori.

Self Assessment Oracles for Anticipatory Testing
Test the unexpected before it causes any failure…

http://pre-crime.eu

