i [he Research Challenges of
the ERC Project PRECRIME

Paolo Tonella

Fondazione
Trento - ltaly

Bruno Kessler

| I I
il
8
BE

[
=4
[]
FONDAZIONE
BRUNO KESSLER O u t | | I l e

1. Motivating scenarios

I

2. PRECRIME

- Goals
- Challenges
- Approach

3. Building blocks
- Oracle quality
- Evolutionary testing

4. Conclusion

I l
/\
Bl

> Land of Al-based systems

Hovv can we test effectively and efficiently
Al based systems?

Impact on all sectors
of our society:

- Mobility

Industry

- Finance

- Services

- Entertainment

11
UV
7\
it

FONDAZIONE ' "
BRUNO KESSLER
Autonomous driving
Driving intelligence
] < > ' Testing issues:
> Localizati ' : : :
R N . - Simulation is slow
. i o e . - Field testing is extremely
y understanding ! expenSive
Sensor i .
| ‘usion - World model instances grow
h } < combinatorially
5 'fff'é'fﬁéﬂfyc°""°' g || - Code coverage is not always
& <> o ' .
A (2) ene - |
(3) ;r:t;%rm fault management 2 i aqtapproprlate adequacy
S S — ___i criterion
venicle platform : . - Test scenarios should be at
diagnostics and fault management i . o
(2) reactive control | the same time realistic and
|, | (3) energy management P |
(4) trajectory execution | extreme
(5) platform stabilization !
(G) propulsion / steering / braking !
(7) passive safety i

—— ——————————————————— — —————— — — ——————— ————— — — ———— — — ——————— ————— —————

Car platform

11
UV
7\
I

Adversarial testing

One-pixel change
- two player game
- Monte Carlo tree search

20) &« 80 100 o X o o 80 100

Xiaowei Huang, Marta Kwiatkowska, Sen Wang, Min Wu. Safety Verification of Deep Neur.
Networks. CAV 2017: 3-29

11

= \J
SN
il

DeepXplore:

- max neuron coverage

- max differential behaviours
- gradient ascent optimization

I)
8

i’-

DRV _Cl:deft DRV C2:cft DRV_C3:left

K. Pel, Y. Cao, J. Yang, and S. Jana. DeepXplore: Automated whitebox testing of deep

learning systems. SOSP 2017
T

-5¢

FONDAZIONE

Adversarial testing

DeepRoad

- map image from
source domain to latent
domain

- generate image in the
new domain from latent
domain

Given such adversarial examples, how do
we know If they may affect any real
execution scenario?

Mengshi Zhang, Yugun Zhang, Lingming Zhang, Cong Liu, Sarfraz Khurshid. DeepRoad:
GAN-based Metamorphic Autonomous Driving System Testing. arXiv:1802.02295

-5¢

F
B

ON
R

DAZIONE
NO KESSLER

lcontract SendBalance {

Financial bots

2 mapping (address => uinL) userBalances;

3 bool withdrawn = false;

4 function getBalance (address u) constant returns (uint){

5 1return userBalances|[u];

6 1} , .

7 function addToBalance () { withdrawBalance Is not

8 userBalances [msg.sender] += msg.value; reentrant:

9 3 | , - The default function value of the
10 function withdrawBalance

11 if (!(msg.sender. sender may call

12 userBalances [msg.seénder]1)())) { throw; } withdrawBalance again,
13 jperPatances [msg.sender] = 0; causing a double transfer of

. S
U

money

The recent TheDao hack
exploited a reentrancy
vulnerability to steal around 60
M$ from Ethereum

A malicious bot may easily
discover and trigger such
reentrant calls

Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, Aquinas Hobor. Making Smart
Contracts Smarter. CCS 2016: 254-269

|
v
i

LT Financial bots

The Making of a Fly: The Genetics of Animal Design (Paperback) Prica at a Glanze
by Peter A, Law-ence

LSt oo I n h n n n
Price; ‘\
¢ Rebacn Se produch infQuathon Used: frar §35.54 gorlt mlc prICIng
AIWAYS DAY TNEOUGN AMIZON.ZONYS 3H0DDING Lart D 1-LACK, Hew: from)
Leamn more aboat Gale Dnline Shope0g enc our jafe buying gwa ortes. PhiRae A/go 1 :
dave 9% W 5697 | Sulllyoun: bere '

i . 1% discount over min price
New (i Fos 51,720,045, 94) 908 (i3 frow 3554) |

Show = New Prime ofiees orty [0 Sorted by mce + oo &

Nuw 1-2¢2 oners

Price ~ Shipplig Comditiun Sulle: Infux natiun Suykyg Oplivrs

$1,730,045.91 New feier profneth P x e .

* 339 shiscng Sellar Rating: il 9306 pogitive ever the patt 12 maaths be S o0 2112 go '
($.195 iR ratras] £i2c 13 te Sum on 1-Click

GOy
InStere Shipe fram NI | nitsd Soabec

B e 27% extra cost for higher
$2198,177.95 Mew st Bordodbook p— rellability and better
* 33W shipeag aller Dating :-ix:,:ﬁ G306 pogitive sver the past 12 maathe

Co or
(123,891 wa) S43e 13 1o fuen on .01k

"
12 Stree. Shipe fram [inkbed Shatne M S e rv l C e S

Cemsals abspca raks ond stum pakcy.
New N N excelient condiber, NoL ssed, My 3¢ 2 datisher
cvzeatock o veve Aight 3wl weear. Setafoctier guarcrtecd!

How do we test a society of intelligent bots
SO as to rule out undesirable emergent
behaviours”

11
UV
7\
it

ORI Te St C h a ‘ ‘ e g eS

- Latent bugs and in-field misbehaviours are unavoidable

- Existing adequacy criteria are not sufficient

- Runtime monitoring for fail-safe execution becomes
essential

- Realistic, yet extreme, scenarios should be generated for
testing

- Anomalies and unexpected execution contexts should be
detected at run time

Many activities traditionally conducted
during offline/pre-release testing must be
moved online/post-release

£
3
function addToBalance () {
userBalances [msg.sender] += msg.value;
3
function withdrawBalance (){
11 if (!'(msg.sender.call.value(
nces [msg.sender])())) { throw; }
13 userBalances [msg.sender 1 = 0;

(implicit)
utility/quality
functions

TEST OBJECTIVES

“ |s it still software testing”?

urns (uint){

NO: no bug in the code

- Code implementing DNN is correct

- Learnt behaviours might be incorrect
even if the learning algorithm is
implemented correctly

YES: implementation deviates from

intended behaviour

- Issue fixing might involve DNN
retraining

- Training data and learning algorithms
might be the fault, rather than just
contain the fault

-3¢ = SE

FONDAZIONE SOFTWARE
BRUNO KESSLER ENGINEERING

PRECRIME

— =
. ==
FONDAZIONE
BRUNO KESSLER rOJ e < :
” ' : o J) ? " »
: L “ n H |

f

n—— m'\;; Yan,

“f N -

: o~ ‘.' - P ‘)
» . A

Self Assessment Orac/es for Ant/C/,oatory Tsst/ng

European

. :':"-.'.:.‘ 'S Research
. .. Nd
-.-_-::'.erc Council

o "..

e <
- - ©
Jesla P,

Facts:

- Funded by the European Research Council under the Advanced Grant
programme

- Will start in Jan 2019; last for 5 years

- Team composed of 10 people (PI, 4 Postdocs, 4 PhD Students, 1 Technologist)

- Website: pre-crime.eu

http://pre-crime.eu

=5¢
RN NS p | rat 10N

- Precrime, police agency that
\ blocks and imprison
murderers before they commit
crime
- Precogs, mutants endowed
with the ability to see future
events before they happen

MINORITY REPORT

Precogs = self-assessment oracle
Precrime agency = anticipatory testing & patch synthesis

FANTASTIC

UNIVERS

SCIENCE FICE
»

Philip K. Dick. The Minority Report. Fantastic Universe, 1956
Minority Report. Directed by Steven Spielberg; featuring Tom Cruise, Colin

WEDRESDAT'S CAILD o Wil Tom

THE MINGRITY BEPORT vy raip Cokk
Farrell, Samantha Morton, Max von Sydow, 2002 KESPERDOF T WOV bt

Ko Voo

PRECRIME aims at preventing the occurrence of failures in unexpected
execution contexts by identifying new, possibly error prone, contexts

_-J

Monitoring

Patch
release

Self- assessment
oracle

N

-

\

L ow
confidence

Anticipatory
test generation

Passing/failing M/ & %

test cases

Patch
synthesis

Challenges

Challenge 1 (Self-assessment oracle):. How fo estimate the system’s
confidence even before correctness of execution can be evaluated?

Challenge 2 (Context aware test case generation): How fo define a
novel, context aware test adequacy criterion, based on a model of the
evolving execution context, so that test cases derived from such a
model achieve high execution confidence?

Challenge 3 (Property adaptation): How fo assess the fault detection
capability of currently available properties when used in a newly
identified context (or state) and how to adapt them so that they can
effectively detect misbehaviours of the system in a new context?

Challenge 4 (Patch synthesis): How to synthesize a dependable patch
that can bring the system to a high confidence?

11
UV
7\
il
B

FONDAZIONE ENGINEERIN
BRUNO KESSLER e a S

PRECRIME will make use of:

- Self-assessment oracle. A self-assessment oracle is an estimator of the
system's confidence in being able to handle a given execution context
correctly.

confidence = (1 — novelty) e (1 — failure probability)

- Anticipatory test generator. Anticipatory testing aims at the creation of test
cases that target a new execution context for which the self-assessment
oracle reports a low confidence level.

Objectives

Objective 1 (self-assessment oracle): Define a confidence metric, to
measure the confidence of the system in handling a new execution
context, and create a self-assessment oracle that can measure
confidence.

Objective 2 (context model): Abstract a new execution context and
system state into a data and behavioural model that can be compared
against previously executed/tested context models.

Objective 3 (context-aware test generator): Generate new test cases
focused on the inadequately tested aspects of a new execution context.

Objective 4 (property adaptation): /dentify deficiencies in available
system properties when applied to a new execution context and
determine candidate adaptations that make such system properties
suitable to act as functional correctness assertions in the new context.

Objective 5 (patch synthesis): Synthesize a candidate patch for a fault
exposed by anticipatory testing.

-D

A Approach

(Unexpected execution Context)

A :
Novelty = Context =
detection = abstraction
. v Property
Self-assessment Context adequacy Property
D .
oracle model adaptation
Low New New
Monitorin text .
J confidence CcOontex Deficiency properties
elimination
Anticipatory
- —> /
test generation Fault
| N detection s///
Passing/failing ~
test cases Patch 0
strengthening
Patch Patch System
release validation properties

Patch
synthesis

RS WOrkp aCk ages

WP1: theoretical foundations
‘-'-"---- '-"-""--"..~

Anticipatory testing Self-)

assessment
oracle

L 4

Execution WP2: context analysis
traces and self-assessment

Context
model

WP4: program

. aammm St cases WP3: test generation
properties

T

Program | . Candidate
WP5: program repair oatch

properties

—-------------.
.-------------,

11
U
7\
Bl

LRSS, B U | d N g b | OC kS

Statistics and information theory (theoretical framework of self-
assessment oracles)

- Model inference (context modeling)

- Machine learning (confidence estimation)

- Evolutionary testing (test generation)
- Constraint solving (test generation)

- Oracle quality (property adaptation)
- Genetic programming, program transformation (patch synthesis)
- Fault localization, symbolic execution (patch constraints)

11
=V
oA A

il

Oracle quality

Gunel Jahangirova, David Clark, Mark Harman, Paolo Tonella. Test oracle assessment
and improvement. ISSTA 2016: 247-258

AZIONE
O KESSI

Oracle deficiencies

public class Subtract {
public double value(double x, double y) {
double result = x-y;
assert (result != x);
(result == x-y);
t;

public class FastMath {
public int max(int a, int b) {
int max;
1f (a >= b) {
max = da;
} else
max

=™

b; // max = a;
¥

(max >= a);

n max;

Missed fault

Oracles may be too strong (false alarms) or too weak (missed faults)

Fz‘%ﬂ‘%‘léza\s,e positives and false negatlve

public class Subtract {
public double value(double x, double y) {
double result = x-y;

assert (result != x);
assert (result == x-y);
return result;
¥
ks
TC=(0, 0)

False positive: program state
where the assertion fails, although
such state respects the intended
program behaviour

public class FastMath {
public int max(int a, int b) {
int max;
1f (a >= b) {
max = a;
} else {
max = b; // max = a;
ks
assert (max >= a);
return max;

}

}

TC=(0, 1)

False negative: program state
where the assertion passes,
although such state violates the
intended program behaviour

%ﬁ““sOracle improvement process

| pesssssmsssmsmmnnen > Manual
| | refinement

Refine
SSASSY

Initial oracle

False positives [€---rmmememmeee- g Test case generation -
: Implicit oracle
/ Mutation analysis Manual oracle

False negatives
a

AR

Inferred properties

-5¢

QORATLE O rac‘e defiCieﬂcy de’[eC’[iOﬂ

public class Subtract {
public double value(double x, double y) {
double result = x - y;

—gocont Coocult L.
assert (result == x - y);
return result;

}
1
@Test

public void testl() throws Throwable {
Subtract subtract® = new Subtract();
try {
subtract@.value(0.0, 0.0);
fail(Q);
} catch (Exception e) {
Iy

public class FastMath {
public int max(int a, int b) {

int max;
if (a >= b) {
max = daj;
} else {
max = b; // max = a;
ks

assert (max >= a);|assert (max >= b);

return max;

i

@Test
/* Strong mutation L:5: // max = a; */
public void test2() throws Throwable {
FastMath fastmath® = new FastMath();
int 1nt@® = fastmath@®.max(0, 1);
int origd = 1;
assertEquals(int0, orig0d);

11
UV
7\
il

Use In Precrime

Objective 4 (property adaptation): /dentify deficiencies in available
system properties when applied to a new execution context and
determine candidate adaptations that make such system properties
suitable to act as functional correctness assertions in the new context.

[Unexpec’red execution context)

4 :
Novelty . Context .
detection : apstraction :
3 A4 Property
Sclf-asscasment Contoxt adeguacy > Propcrty
oracle modecl adaptation
Low ik New
H H v , 4
fonitoring sonfiddenca context Detiziency properties
alim naticn
Anticipatory < >
lest generation Fault = "
detection

Passing/lailing
Test cases

Patch
strengthening

atch System
validalion prooerties

Patch
syntnesis

11
4V
"IN\

it

Evolutionary testing

Cu D. Nguyen, Simon Miles, Anna Perini, Paolo Tonella, Mark Harman, Michael
Luck: Evolutionary testing of autonomous software agents. Journal of
Autonomous Agents and Multi-Agent Systems, vol. 25, n. 2, pp. 260-283 2012.

* Autonomous cleaner robot

Stakeholder

eep the alrpo

c Safely stop)

Environment
monitored

(Recharging) CLooking forwaste)

) (Dropping waste

Looking for
harging station

Legends m

decomposition

_— s
coNnMﬂmn+

*

dependence

- Quality functions are derived from
the agent goals
- Maintaining battery
- Avoiding obstacle

- BEvolutionary testing generates test

scenarios that exhibit poor quality
levels

«= Evolutionary world creation

SIMULATION

4 ", 4
- - ~
8 .
)

Initial 1d Execution & Quality
nitial wor : .
i ‘ fitness eval fUﬂCtI oNns

L4 %

Reproduction « Selection

Single vs. multiple fithess functions:
e Maintain battery. world instances where recharging is difficult

e Avoid obstacles: world instances where paths through obstacles are narrow
and difficult to take

e Maintain battery and Avoid obstacles: world instances where low power
consumption and obstacle avoidance contlict with each other

Wastebin

Charging
station

Obstacle

<Xi, Y1, .

<X1, Y1, .

<X1, Y1, X2, Yo>

<X1’ y11 X2; y2>

) XNOJ yNO>

e XNW1 yNW>

SOFTWARE
NGINEERING

:%?<: _
RS Evo\u’u()ﬂal’y WOl’|d creator

Execution &

v Population size 30
Initial world ‘ fitness eval

instances

’ Max generations 100

%

Reproduction « Selection

Mutation probability 3%

Crossover probability 90%

Chromosome:
<<X1, Y1, X2, Vo=, <X1, Y1, X2, Vo=, <X1, Y1, ..., XNo, YNo=>, <X1, V1, ..., XNw, YNw=>>

Fithess functions:
foower = 1/ Total power consumption
fors = 1 / Number of obstacles encountered

-5¢

FONDAZIONE

A world with min fobs

Cranging statio“ #1) Chrargine staticn #1

(T htastebi 40 070!
.

OWasteb

High probability of crashing into an obstacle after reaching wastebin #0.

-5¢

FONDAZIONE

S22 A world with min fower

"

- .

Char¢ing station #0 Chargirgstetion #1

{Wasteoin #0 (0/20)

C' Wil

Waste items near the corners increase battery consumption.

=< | .
e A world with min fObS; prWGF

.Wasteh

,—l Charg rgstat on & [_ Chargingstazion 81

_O_jWastebi.n

N ®

Waste items near the corners increase battery consumption and obstacles
along the paths to the waste items increase the chances of collisions

-5¢

FONDAZIONE
BRUNO KESSLER

Real fault

il
Bl
BB

20

<maintaingoal name="maintainbattery" retry="true" recur="true" retrydelay="0">
<deliberation cardinality="-1">
<inhibits ref="performlookforwaste" inhibit="when in process"/>
<inhibits ref="achievecleanup" inhibit="when in process"/>
<inhibits ref="achievepickupwaste" inhibit="when in process"/>
<inhibits ref="achievedropwaste" inhibit="when in process"/>

<!-- disable also the avoiding obstacle goal when battery 1s too
<inhibits ref="avoidobstacles" inhibit="when in process">
$beliefbase.my chargestate < 0.03
</inhibits>

low -->

</deliberation>

<!-- engage in actions when the state is below MINIMUM BATTERY CHARGE. -->

<maintaincondition>
$beliefbase.my chargestate > MyConstants.MINIMUM BATTERY CHARGE
</maintaincondition>

<!-- The goal is satisfied when the charge state is 1.0. -->
<targetcondition>
$beliefbase.my chargestate == 1.0
</targetcondition>
</maintaingoal>

A collision happens when:
1. the battery level drops below 3%;
2. there are nearby obstacles in the path of the agent.

The chance of detecting this fault with a single objective fitness function is very low,
while it is high when both guality functions are minimized.

Use In Precrime

Objective 3 (context-aware test generator): Generate new test cases
focused on the inadequately tested aspects of a new execution context.

(Unexpeo’red axecution conlext)

4
Novelty .
detection :

Context
abstraction :

Passing/lailing
Test cases

Patch
strengthening

Patch
syntnesis

aich
validation

2 A4 Property
Sclf-asscssment Context adeguacy Property
oracle modc] adaptation
New
—_— Low i New
fonitoring sonfidenca centext Detiziency properties
alim naticn
Anticipatory
test generation Fault —
detection =

System
prooeriiss

i Conc\USIOﬂ

o ; m B
- - " ';‘ ‘\ll
1"'“ (e" ’ oy ¢ a4 -
e %m i ! % ' .
‘ -‘qﬁ S 4. PRECRIME !’v‘«‘l AL

- "'- A -
J*s / . » El iy 1 A o ™ » - . . =
A ‘ >, v - - . N - e
m ’ » e - 3 b y ' ' ' -'- . e ' ’|

Self Assessment Oracles for Ant:c:patory Testmg
Jest the unexpected before it causes any failure. ..

http:/pre-crime.eu

Evolutionary and Al capabilities are granted to test generators, in order to
make them capable of testing autonomous, Al based systems.

The test oracle becomes an adaptive, live artifact, whose deficiencies are
automatically detected and resolved.

Self-assessment quantifies the likelihood of achievement of the Al system’s
goals in the given execution context.

Online testing becomes a critical component of Al systems, due to the
huge amount of execution contexts that cannot be exercised a priori.

