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Land of AI-based systems
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Impact on all sectors 
of our society: 
-  Mobility
-  Industry
-  Finance
-  Services
-  Entertainment

How can we test effectively and efficiently 
AI based systems?



Autonomous driving
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Testing issues: 
- Simulation is slow 
- Field testing is extremely 

expensive 
- World model instances grow 

combinatorially 
- Code coverage is not always 

an appropriate adequacy 
criterion 

- Test scenarios should be at 
the same time realistic and 
extreme



Adversarial testing
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Xiaowei Huang, Marta Kwiatkowska, Sen Wang, Min Wu. Safety Verification of Deep Neural 
Networks. CAV 2017: 3-29

One-pixel change 
- two player game 
- Monte Carlo tree search



Adversarial testing
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K. Pei, Y. Cao, J. Yang, and S. Jana. DeepXplore: Automated whitebox testing of deep 
learning systems. SOSP 2017

DeepXplore: 
- max neuron coverage 
- max differential behaviours 
- gradient ascent optimization



Adversarial testing
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Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, Sarfraz Khurshid. DeepRoad: 
GAN-based Metamorphic Autonomous Driving System Testing. arXiv:1802.02295

DeepRoad 
- map image from 

source domain to latent 
domain 

- generate image in the 
new domain from latent 
domain

Given such adversarial examples, how do 
we know if they may affect any real 

execution scenario?



Financial bots
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Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, Aquinas Hobor. Making Smart 
Contracts Smarter. CCS 2016: 254-269

withdrawBalance is not 
reentrant:
- The default function value of the 

sender may call 
withdrawBalance again, 
causing a double transfer of 
money 

- The recent TheDao hack 
exploited a reentrancy 
vulnerability to steal around 60 
M$ from Ethereum 

- A malicious bot may easily 
discover and trigger such 
reentrant calls



Financial bots
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Algorithmic pricing
Algo 1:  
1% discount over min price 

Algo 2: 
27% extra cost for higher 
reliability and better 
services

How do we test a society of intelligent bots 
so as to rule out undesirable emergent 

behaviours?



Test challenges
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- Latent bugs and in-field misbehaviours are unavoidable 
- Existing adequacy criteria are not sufficient 
- Runtime monitoring for fail-safe execution becomes 

essential 
- Realistic, yet extreme, scenarios should be generated for 

testing 
- Anomalies and unexpected execution contexts should be 

detected at run time

Many activities traditionally conducted 
during offline/pre-release testing must be 

moved online/post-release



Is it still software testing?
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NO: no bug in the code 
- Code implementing DNN is correct 
- Learnt behaviours might be incorrect 

even if the learning algorithm is 
implemented correctly

goals

(implicit) 
utility/quality 

functions
TEST OBJECTIVES

YES: implementation deviates from 
intended behaviour 
- Issue fixing might involve DNN 

retraining 
- Training data and learning algorithms 

might be the fault, rather than just 
contain the fault
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PRECRIME



Project
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Facts:  
- Funded by the European Research Council under the Advanced Grant 

programme 
- Will start in Jan 2019; last for 5 years  
- Team composed of 10 people (PI, 4 Postdocs, 4 PhD Students, 1 Technologist) 
- Website: pre-crime.eu

Self Assessment Oracles for Anticipatory Testing

http://pre-crime.eu


Inspiration
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Philip K. Dick. The Minority Report. Fantastic Universe, 1956 
Minority Report. Directed by Steven Spielberg; featuring Tom Cruise, Colin 
Farrell, Samantha Morton, Max von Sydow, 2002

- Precrime, police agency that 
blocks and imprison  
murderers before they commit 
crime 

- Precogs, mutants endowed 
with the ability to see future 
events before they happen

MINORITY REPORT

Precogs = self-assessment oracle  
Precrime agency = anticipatory testing & patch synthesis



Goal
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PRECRIME aims at preventing the occurrence of failures in unexpected 
execution contexts by identifying new, possibly error prone, contexts 

Self-assessment 
oracle

Anticipatory 
test generation

Monitoring Low 
confidence

Patch 
synthesis

Passing/failing 
test cases

Patch 
release



Challenges
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Challenge 1 (Self-assessment oracle): How to estimate the system’s 
confidence even before correctness of execution can be evaluated?

Challenge 2 (Context aware test case generation): How to define a 
novel, context aware test adequacy criterion, based on a model of the 
evolving execution context, so that test cases derived from such a 
model achieve high execution confidence?

Challenge 3 (Property adaptation): How to assess the fault detection 
capability of currently available properties when used in a newly 
identified context (or state) and how to adapt them so that they can 
effectively detect misbehaviours of the system in a new context?

Challenge 4 (Patch synthesis): How to synthesize a dependable patch 
that can bring the system to a high confidence?



Ideas
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PRECRIME will make use of:  

- Self-assessment oracle. A self-assessment oracle is an estimator of the 
system’s confidence in being able to handle a given execution context 
correctly. 

confidence = (1 – novelty) • (1 – failure probability) 

- Anticipatory test generator. Anticipatory testing aims at the creation of test 
cases that target a new execution context for which the self-assessment 
oracle reports a low confidence level.



Objectives
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Objective 3 (context-aware test generator): Generate new test cases 
focused on the inadequately tested aspects of a new execution context.

Objective 2 (context model): Abstract a new execution context and 
system state into a data and behavioural model that can be compared 
against previously executed/tested context models.

Objective 1 (self-assessment oracle): Define a confidence metric, to 
measure the confidence of the system in handling a new execution 
context, and create a self–assessment oracle that can measure 
confidence.

Objective 4 (property adaptation): Identify deficiencies in available 
system properties when applied to a new execution context and 
determine candidate adaptations that make such system properties 
suitable to act as functional correctness assertions in the new context.

Objective 5 (patch synthesis): Synthesize a candidate patch for a fault 
exposed by anticipatory testing.



Approach
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Self-assessment 
oracle

Anticipatory 
test generation

Property 
adaptation

Monitoring Low 
confidence

System 
properties

Patch 
synthesis

Patch 
strengthening

Fault 
detection

Passing/failing 
test cases

Patch 
release

Unexpected execution context

Novelty 
detection

Context  
model

Context 
abstraction

Property 
adequacy

Deficiency 
elimination

Patch 
validation

New 
context New 

properties



Workpackages
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WP2: context analysis 
and self-assessment

WP4: program 
properties WP3: test generation

WP5: program repair

Execution 
traces

Self-
assessment 

oracle

Context 
model

Candidate 
patch

Program 
properties

Test cases 

Anticipatory testing
WP1: theoretical foundations

WP6: empirical validation



Building blocks
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-  Statistics and information theory (theoretical framework of self-
assessment oracles) 

-  Model inference (context modeling) 
-  Machine learning (confidence estimation) 
-  Evolutionary testing (test generation) 
-  Constraint solving (test generation) 
-  Oracle quality (property adaptation) 
-  Genetic programming, program transformation (patch synthesis) 
-  Fault localization, symbolic execution (patch constraints)



 22

Oracle quality

Gunel Jahangirova, David Clark, Mark Harman, Paolo Tonella. Test oracle assessment 
and improvement. ISSTA 2016: 247-258



Oracle deficiencies
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public class Subtract {
    public double value(double x, double y) {
        double result = x-y;
         assert (result != x);
         assert (result == x-y);
         return result; 
   } 
}

public class FastMath {
public int max(int a, int b) {

int max;
if (a >= b) {

max = a;
} else {

max = b; // max = a;
}
assert (max >= a);
return max;

}
}

Fa
lse

 al
arm

Oracles may be too strong (false alarms) or too weak (missed faults)

Missed fault



False positives and false negatives
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TC=(0, 0) 
False positive: program state 
where the assertion fails, although 
such state respects the intended 
program behaviour

TC=(0, 1) 
False negative: program state 
where the assertion passes, 
although such state violates the 
intended program behaviour

public class Subtract {
    public double value(double x, double y) {
        double result = x-y;
         assert (result != x);
         assert (result == x-y);
         return result; 
   } 
}

public class FastMath {
public int max(int a, int b) {

int max;
if (a >= b) {

max = a;
} else {

max = b; // max = a;
}
assert (max >= a);
return max;

}
}



Oracle improvement process

 25

Oracle assessment and improvement

Manual&
refinement

Test&case&generation

Mutation&analysis

False&positives

False&negatives

Re
fin

e
Assess

Initial&oracle

Implicit&oracle

Manual&oracle

Inferred&properties



Oracle deficiency detection
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public class Subtract {
public double value(double x, double y) {

double result = x - y;
assert (result != x);
assert (result == x - y);
return result;

}
}

@Test
public void test1() throws Throwable {

Subtract subtract0 = new Subtract();
try {

subtract0.value(0.0, 0.0);
fail();

} catch (Exception e) {
}

}

public class FastMath {
public int max(int a, int b) {

int max;
if (a >= b) {

max = a;
} else {

max = b; // max = a;
}
assert (max >= a);
return max;

}
}

@Test
/* Strong mutation L:5: // max = a; */
public void test2() throws Throwable {

FastMath fastmath0 = new FastMath();
int int0 = fastmath0.max(0, 1);
int orig0 = 1;
assertEquals(int0, orig0);

}

assert (max >= b);



Use in Precrime
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Objective 4 (property adaptation): Identify deficiencies in available 
system properties when applied to a new execution context and 
determine candidate adaptations that make such system properties 
suitable to act as functional correctness assertions in the new context.
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Evolutionary testing

Cu D. Nguyen, Simon Miles, Anna Perini, Paolo Tonella, Mark Harman, Michael 
Luck: Evolutionary testing of autonomous software agents. Journal of 
Autonomous Agents and Multi-Agent Systems, vol. 25, n. 2, pp. 260-283 2012.



Autonomous cleaner robot
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Stakeholder

Robustness

Keep the airport 
clean

Efficiency

Legends Goal
Actor

softgoal dependence

Robustness

+contribution

Keep the airport 
clean

Efficiency

+ +
Maintaining 
battery

Avoiding 
obstacle

Safely stop

Battery loaded

Looking for waste

Looking for 
charging station

Environment 
monitored

Dropping waste

Recharging

decomposition

+

+

Cleaner
Agent

- Quality functions are derived from 
the agent goals 
- Maintaining battery 
- Avoiding obstacle  

- Evolutionary testing generates test 
scenarios that exhibit poor quality 
levels



Evolutionary world creation
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Initial	world	
instances

Execution	&	
fitness	eval

SelectionReproduction

World 
Model

Quality 
functions

SIMULATION

Single vs. multiple fitness functions: 
•  Maintain battery: world instances where recharging is difficult 
•  Avoid obstacles: world instances where paths through obstacles are narrow 

and difficult to take 
•  Maintain battery and Avoid obstacles: world instances where low power 

consumption and obstacle avoidance conflict with each other



World model
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Obstacle

Waste

Charging 
station

Wastebin <x1, y1, x2, y2>

<x1, y1, x2, y2>

<x1, y1, …, xNo, yNo>

<x1, y1, …, xNw, yNw>



Evolutionary world creator
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Initial	world	
instances

Execution	&	
fitness	eval

SelectionReproduction

Chromosome: 
<<x1, y1, x2, y2>, <x1, y1, x2, y2>, <x1, y1, …, xNo, yNo>, <x1, y1, …, xNw, yNw>> 

Fitness functions: 
fpower = 1 / Total power consumption 
fobs = 1 / Number of obstacles encountered

Population size 30

Max generations 100

Mutation probability 3%

Crossover probability 90%



A world with min fobs
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High probability of crashing into an obstacle after reaching wastebin #0.



A world with min fpower
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Waste items near the corners increase battery consumption.



A world with min fobs, fpower
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Waste items near the corners increase battery consumption and obstacles 
along the paths to the waste items increase the chances of collisions



Real fault

 36
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A collision happens when: 
1. the battery level drops below 3%; 
2. there are nearby obstacles in the path of the agent. 

The chance of detecting this fault with a single objective fitness function is very low, 
while it is high when both quality functions are minimized.



Use in Precrime

 37

Objective 3 (context-aware test generator): Generate new test cases 
focused on the inadequately tested aspects of a new execution context.



Conclusion
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- Evolutionary and AI capabilities are granted to test generators, in order to 
make them capable of testing autonomous, AI based systems. 

- The test oracle becomes an adaptive, live artifact, whose deficiencies are 
automatically detected and resolved. 

- Self-assessment quantifies the likelihood of achievement of the AI system’s 
goals in the given execution context. 

- Online testing becomes a critical component of AI systems, due to the 
huge amount of execution contexts that cannot be exercised a priori.

Self Assessment Oracles for Anticipatory Testing
Test the unexpected before it causes any failure…

http://pre-crime.eu


