
Approaches to automatic
differentiation
Bart van Merriënboer
Google Brain and MILA

Automatic differentiation

Gradients

Automatic Numerical differentiation

Only the original function is needed.
Note that finite differences are an approximation.

Automatic Symbolic differentiation

mul

x 2

2

Automatic differentiation

Automatic differentiation (AD) […] is a set of techniques to numerically evaluate the derivative of a
function specified by a computer program. AD exploits the fact that every computer program, no matter
how complicated, executes a sequence of elementary arithmetic operations (addition, subtraction,
multiplication, division, etc.) and elementary functions (exp, log, sin, cos, etc.). By applying the chain rule
repeatedly to these operations, derivatives of arbitrary order can be computed automatically, accurately
to working precision, and using at most a small constant factor more arithmetic operations than the
original program.

—Wikipedia

Automatic differentiation

def f(x):
 a = x * x
 b = log(a)
 return b

df = grad(f)

Automatic differentiation

● What program representation do we transform?
● Do we perform the transformation ahead-of-time (source code

transformation) or at runtime (operator overloading)?
● How do we ensure that the transformed program is still amenable to

efficient execution and compilation?

● How can the user debug the generated adjoint code?
● How can the user modify the generated adjoint code?

ML frameworks with AD support

 TensorFlow

● Python (or another language) is used to metaprogram a computation
graph. This graph is transformed and executed with a custom pipeline.

x = tf.placeholder(tf.float32)
i = tf.constant(0)
c = lambda i: tf.less(i, 10)
b = lambda i, x: tf.add(i, 1), tf.tanh(x)
r = tf.while_loop(c, b, [i, x])
dx = tf.gradients(r[1], x)

Computation
graphs

● Inspired from computer algebra
systems and dataflow
programming

● Allow the user to build a
directed acyclic graph (DAG)
where the nodes are functions
and the edges are
dependencies

● The graph is transformed into a
new graph which calculates the
gradient

● Example of ∇f(g(x), h(x))

Advantages

● Computation graphs are purely functional
program representations without scoping,
which makes them easy to transform

● Computation graphs and their gradient
graphs are high level and can be manually
inspected

● The two-stage execution model frees us
from the Python interpreter (e.g. mobile
deployment, XLA)

Disadvantages

● Metaprogramming introduces cognitive
overhead, leads to verbose code, and
requires two debuggers, two runtimes, two
“languages”, etc.

● The limited representational power of
computation graphs can complicate the
implementation of some algorithms (e.g.
those using recursion)

 TensorFlow

TensorBoard: Visualizing and inspecting computation graphs

Use operator overloading to trace the execution a Python program. Then
transform this linear trace of computation.

 PyTorch

x = torch.tensor(1, requires_grad=True)
i = 0
while i < 10:
 x = torch.tanh(x)
 i += 1
x.backward()
dx = x.grad

 PyTorch

Advantages

● No metaprogramming required: More
natural code which can include high-level
programming constructs such as
recursion and closures.

● Execution happens within Python (kind of)

Disadvantages

● Runtime overhead because of tracing
through operator overloading

● Gradient code only exists as a data
structure (linear trace) which is
interpreted, can be hard to debug

● Execution happens within Python

Tangent

● Transform Python’s
AST directly and
generate new
source code

def f(x):
 a = x * x
 b = log(a)
 return b

df = grad(f)

def dfdx(x, init_grad=1.0):
 # Set the initial gradient
 db = init_grad
 a = x * x

 # Grad of: b = log(a)
 da = db / a

 # Grad of: a = x * x
 _dx2 = tangent.unbroadcast(da * x, x)
 dx = tangent.unbroadcast(da * x, x)
 dx = tangent.add_grad(dx, _dx2)
 return dx

Tangent

Advantages

● Human-readable source code
● Separation of concerns, integrates with

the Python ecosystem: Step through your
program with pdb, compile the code with
Numba, etc.

Disadvantages

● Only runs in Python
● SCT is hard to implement for dynamic

languages (needs mini Python compiler)

● Myia
○ Combine dataflow programming with functional language compiler representations to

provide flexibility and high performance
○ Avoid metaprogramming by compiling a subset of Python

● Swift for TensorFlow
○ Build first-class AD support into the language’s compiler

● JuliaDiff
○ First-class AD support for Julia

Other approaches

Take-home messages

● Automatic differentiation cannot be an afterthought; it impacts the entire
development cycle of machine learning models

● Different implementations of automatic differentiation come with different
trade-offs (ease of implementation, performance, usability, flexibility)

● Still work to do:
○ Languages with first-class AD support (research ones exist: VLAD, DVL)
○ Debuggers that understand the relationship between original and gradient code
○ Bring together writing kernels and models in a single framework

Thank you for
listening.
Questions?

