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Automatic differentiation



Gradients



Automatic Numerical differentiation

Only the original function is needed.
Note that finite differences are an approximation.



Automatic Symbolic differentiation

mul

x 2

2



Automatic differentiation

Automatic differentiation (AD) […] is a set of techniques to numerically evaluate the derivative of a 
function specified by a computer program. AD exploits the fact that every computer program, no matter 
how complicated, executes a sequence of elementary arithmetic operations (addition, subtraction, 
multiplication, division, etc.) and elementary functions (exp, log, sin, cos, etc.). By applying the chain rule 
repeatedly to these operations, derivatives of arbitrary order can be computed automatically, accurately 
to working precision, and using at most a small constant factor more arithmetic operations than the 
original program.

—Wikipedia



Automatic differentiation

def f(x):
    a = x * x 
    b = log(a)
    return b

df = grad(f)



Automatic differentiation

● What program representation do we transform?
● Do we perform the transformation ahead-of-time (source code 

transformation) or at runtime (operator overloading)?
● How do we ensure that the transformed program is still amenable to 

efficient execution and compilation?

● How can the user debug the generated adjoint code?
● How can the user modify the generated adjoint code?



ML frameworks with AD support



       TensorFlow

● Python (or another language) is used to metaprogram a computation 
graph. This graph is transformed and executed with a custom pipeline.

x = tf.placeholder(tf.float32)
i = tf.constant(0)
c = lambda i: tf.less(i, 10)
b = lambda i, x: tf.add(i, 1), tf.tanh(x)
r = tf.while_loop(c, b, [i, x])
dx = tf.gradients(r[1], x)



Computation 
graphs

● Inspired from computer algebra 
systems and dataflow 
programming

● Allow the user to build a 
directed acyclic graph (DAG) 
where the nodes are functions 
and the edges are 
dependencies

● The graph is transformed into a 
new graph which calculates the 
gradient

● Example of ∇f(g(x), h(x))



Advantages

● Computation graphs are purely functional 
program representations without scoping, 
which makes them easy to transform

● Computation graphs and their gradient 
graphs are high level and can be manually 
inspected

● The two-stage execution model frees us 
from the Python interpreter (e.g. mobile 
deployment, XLA)

Disadvantages

● Metaprogramming introduces cognitive 
overhead, leads to verbose code, and 
requires two debuggers, two runtimes, two 
“languages”, etc.

● The limited representational power of 
computation graphs can complicate the 
implementation of some algorithms (e.g. 
those using recursion)

       TensorFlow



TensorBoard: Visualizing and inspecting computation graphs



Use operator overloading to trace the execution a Python program. Then 
transform this linear trace of computation.

       PyTorch

x = torch.tensor(1, requires_grad=True)
i = 0
while i < 10:
    x = torch.tanh(x)
    i += 1
x.backward()
dx = x.grad



       PyTorch

Advantages

● No metaprogramming required: More 
natural code which can include high-level 
programming constructs such as 
recursion and closures.

● Execution happens within Python (kind of)

Disadvantages

● Runtime overhead because of tracing 
through operator overloading

● Gradient code only exists as a data 
structure (linear trace) which is 
interpreted, can be hard to debug

● Execution happens within Python



Tangent

● Transform Python’s 
AST directly and 
generate new 
source code

def f(x):
  a = x * x
  b = log(a)
  return b
  
df = grad(f)

def dfdx(x, init_grad=1.0):
    # Set the initial gradient
    db = init_grad
    a = x * x

    # Grad of: b = log(a)
    da = db / a

    # Grad of: a = x * x
    _dx2 = tangent.unbroadcast(da * x, x)
    dx = tangent.unbroadcast(da * x, x)
    dx = tangent.add_grad(dx, _dx2)
    return dx



Tangent

Advantages

● Human-readable source code
● Separation of concerns, integrates with 

the Python ecosystem: Step through your 
program with pdb, compile the code with 
Numba, etc.

Disadvantages

● Only runs in Python
● SCT is hard to implement for dynamic 

languages (needs mini Python compiler)



● Myia
○ Combine dataflow programming with functional language compiler representations to 

provide flexibility and high performance
○ Avoid metaprogramming by compiling a subset of Python

● Swift for TensorFlow
○ Build first-class AD support into the language’s compiler

● JuliaDiff
○ First-class AD support for Julia

Other approaches



Take-home messages

● Automatic differentiation cannot be an afterthought; it impacts the entire 
development cycle of machine learning models

● Different implementations of automatic differentiation come with different 
trade-offs (ease of implementation, performance, usability, flexibility)

● Still work to do:
○ Languages with first-class AD support (research ones exist: VLAD, DVL)
○ Debuggers that understand the relationship between original and gradient code
○ Bring together writing kernels and models in a single framework



Thank you for 
listening. 
Questions?


