Challenges in (machine) learning from textual software artifacts

Andrian (Andi) Marcus Seers group

Software Engineering for

Machine Learning Applications

Machine Learning Applications for

Software Engineering

Source: utdallas.edu

THE ERIK IONSSON SCHO

ENGINEERING AND COMPUTER SCIENCE

Software Evolution Research group

KING SAUNA

Oscar Chaparro

Juan Manuel Florez

King Spa Dallas, TX

SEERS alumni

Denys Poshyvanyk William and Mary

Sonia Haiduc Florida State U.

Laura Moreno Colorado State U.

Jairo Aponte U. Nacional de Colombia

Research interests and goals

Information about the software and how it relates to code domain information, design rationale, etc. present in textual software artifacts

Help developer (better) develop (better) software we are not building "intelligent" systems AI/ML is just part of the solutions we are building automated assistants for (intelligent) developers we can tolerate some failure and some lack of trust

SEMLA'18

Research work

Happy users of ...

Information retrieval, for:

Concept/feature/bug localizationBug triageTraceability link recoveryDefect predictionSoftware documentation generationImpact analysisCode quality and refactoringReverse engineering

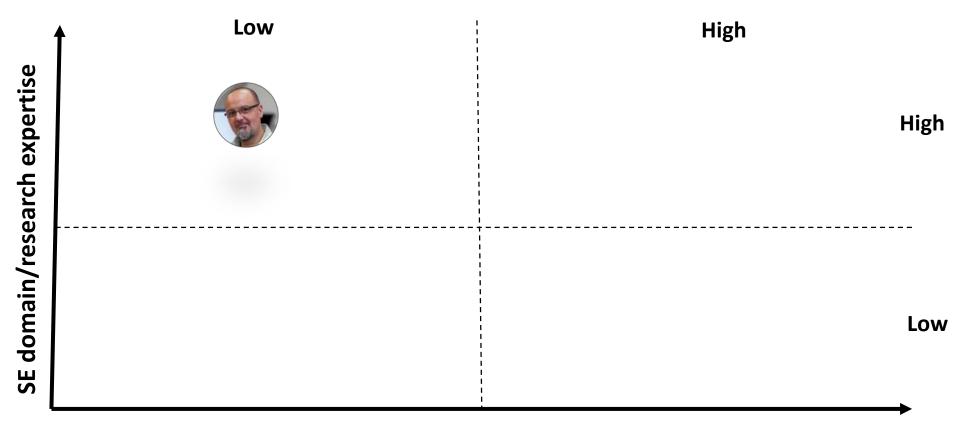
Machine learning , for:

Query improvement for code retrieval Bug triage

Reverse engineering

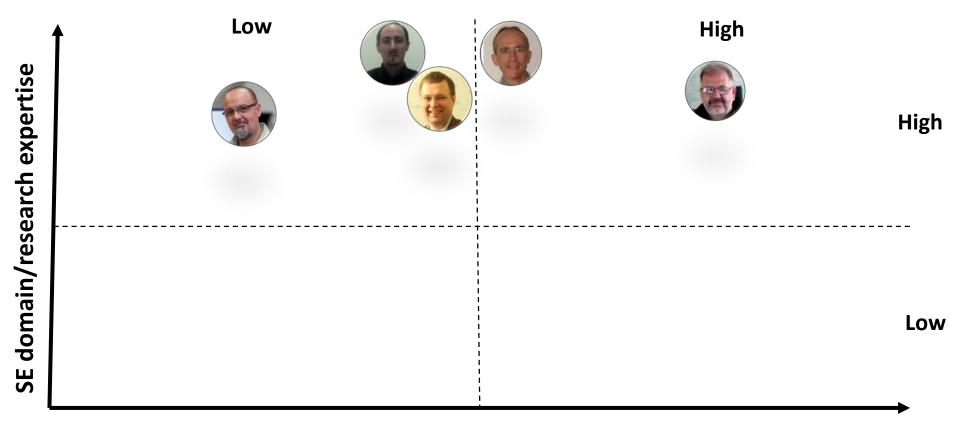
Defect prediction

Where am I?



ML domain/research expertise

My SEMLA'18 collaborators



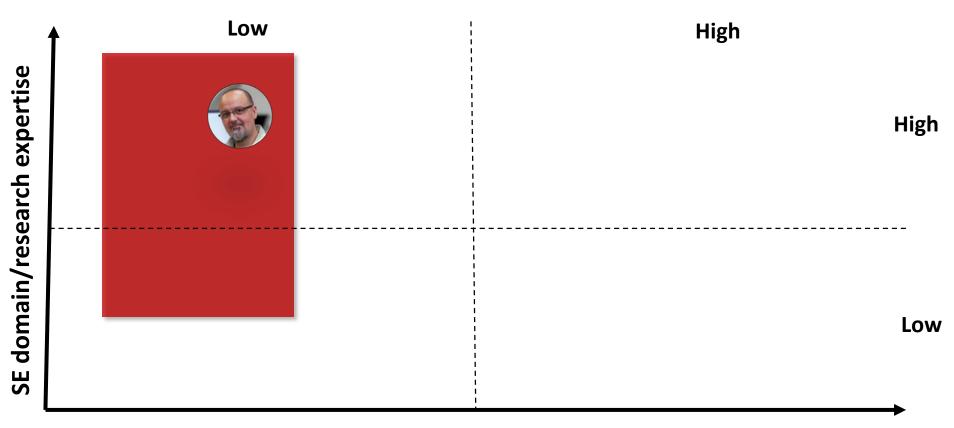
ML domain/research expertise

Our experience with ML in SE

- Reverse engineering legacy code, code summarization clustering, heuristics
- **Defect prediction**
 - logistic regression, Bayes, classification trees, transfer learning
- Query quality and reformulation for software retrieval classification trees

Identification of information in bug reports support vector machine, heuristics

Challenges as an (average) ML user in SE



ML domain/research expertise

How did we choose an ML technique?

Our expert collaborator said so

reuse experience and expertise educational experience for us configuration and rationale for free requires a leap of faith

Collaborators

Tim Menzies, Max Di Penta, Denys Poshyvanyk, Sonia Haiduc, Laura Moreno, Giulio Antoniol, Gabriele Bavota, Gerardo Canfora, Giuseppe Scanniello, Rudolf Ferenc, Tibor Gyimothy, Vincent Ng, etc.

How did we choose an ML technique?

The same as previous work against which we compared the focus of the research is on the features reuse the experience of previous work – not always easy, poorly documented not always the best

Tried several and kept the one that has best results hard to decide which one IS the best - not always the same winner across data sets hard to explain why the best is best – usually guess the combination of techniques X parameters is huge - tough choices to make

Relates to David Parnas' "lazy way"

How did we choose an ML technique?

Decision trees – the easy choice

low configuration headache reasonable guidelines in training data selection relatively easy to explain the results

- which features matter most

not always the best

Learning from bug reports

End user bug reports contain descriptions of:

observed behavior (OB), expected behavior (EB), steps to reproduce (S2R)

EB (65%) and S2R (49%) are often missing

Automatically detect the absence of EB and S2R

Chaparro, O., Lu, J., Zampetti, F., Moreno, L., Di Penta, M., Marcus, A., Ng, V., "Detecting missing information in bug descriptions", *Joint Meeting on the Foundations of Software Engineering (ESEC/FSE 2017),* pp. 376-387.

Discourse patterns in bug descriptions

Tagged 2,900 bug reports

EB is described using 31 discourse patterns S2R is described using 33 discourse patterns

Pattern code: S_EB_SHOULD

Description: sentence using the modals "should" or "shall" with no preceding predicates that use negative auxiliary verbs **Rule:** [subject] should/shall (not) [complement] **Example:** [*Apache*] **should** [make an attempt to print the date in the language requested by the client] (from Httpd 40431)

Machine learning

We used SVM

at the NLP expert (Vincent Ng) recommendation

Part of the labeled data was used for parameter calibration

The rest for intrinsic evaluation

Detecting missing EB

Strategy or Features	EB		
	Avg. Prec.	Avg. Recall	Avg. F_1
-	86.0%	85.9%	85.9%
all patterns	96.7%	46.1%	62.2%
no ambiguous patterns	95.1%	76.6%	84.7%
pos	73.8%	93.1%	82.0%
<i>n</i> -gram	75.1%	97.6%	84.7%
pos + <i>n</i> -gram	76.0%	95.1%	84.2%
patterns	85.9%	93.2%	89.4%
patterns + pos	77.9%	92.9%	84.6%
patterns + <i>n</i> -gram	76.9%	97.0%	85.6%
pos + patterns + <i>n</i> -gram	76.8%	95.8%	85.1%
	- all patterns no ambiguous patterns pos <i>n</i> -gram pos + <i>n</i> -gram patterns patterns + pos patterns + <i>n</i> -gram	Avg. Prec 86.0% all patterns 96.7% no ambiguous patterns 95.1% pos 73.8% <i>n</i> -gram 75.1% pos + <i>n</i> -gram 76.0% patterns 85.9% patterns + pos 77.9% patterns + <i>n</i> -gram 76.9%	Strategy or Features $Avg. Prec.$ $Avg. Recall$ - 86.0% 85.9% all patterns 96.7% 46.1% no ambiguous patterns 95.1% 76.6% pos 73.8% 93.1% n -gram 75.1% 97.6% pos + n -gram 76.0% 95.1% patterns 85.9% 93.2% patterns + pos 77.9% 92.9% patterns + n -gram 76.9% 97.0%

Detecting missing S2R

Approach	Strategy or Features	S2R		
		Avg. Prec.	Avg. Recall	Avg. F_1
DeMIBuD-R	-	63.3%	92.4%	74.3%
DeMIBuD-H	all patterns	84.5%	31.0%	44.3%
DeMIBuD-H	no ambiguous patterns	81.6%	38.5%	51.2%
DEMIBUD-ML	pos	60.8%	75.8%	66.8%
DEMIBUD-ML	<i>n</i> -gram	66.4%	83.4%	73.4%
DEMIBUD-ML	pos + <i>n</i> -gram	65.3%	79.2%	71.1%
DEMIBUD-ML	patterns	63.5%	80.3%	70.7%
DEMIBUD-ML	patterns + pos	65.4%	76.0%	69.9%
DEMIBUD-ML	patterns + <i>n</i> -gram	69.2%	83.0%	74.9%
DEMIBUD-ML	pos + patterns + <i>n</i> -gram	67.2%	80.9%	73.0%

Need expertise for labelling data (i.e., bug reports) cannot use Amazon Mechanical Turk or crowdsourcing very high cost per data point

Evaluation and application

Extrinsic evaluation too costly

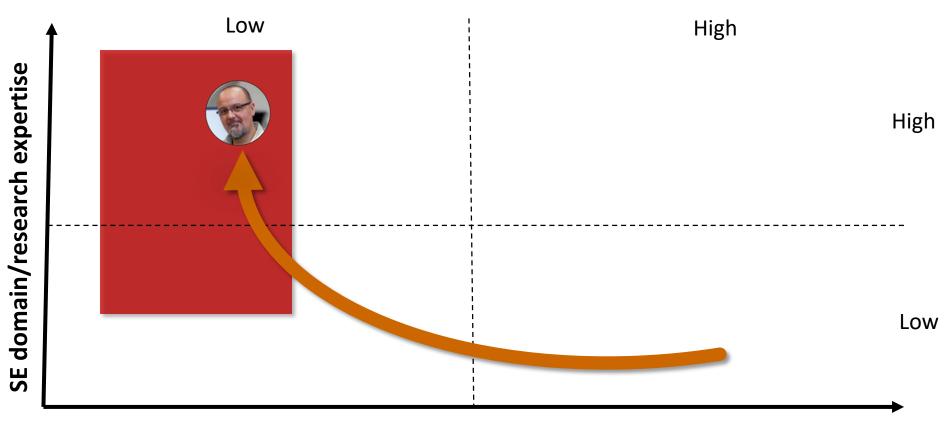
needs integration with additional techniques the classification is often just an intermediary step of a solution

Cost of producing the training data limits applicability, despite better results than the heuristic based approach

Cannot infer explanations based on the NL features (i.e., pos)

SEMLA'18

What do I want from the ML experts?



ML domain/research expertise

Guidelines

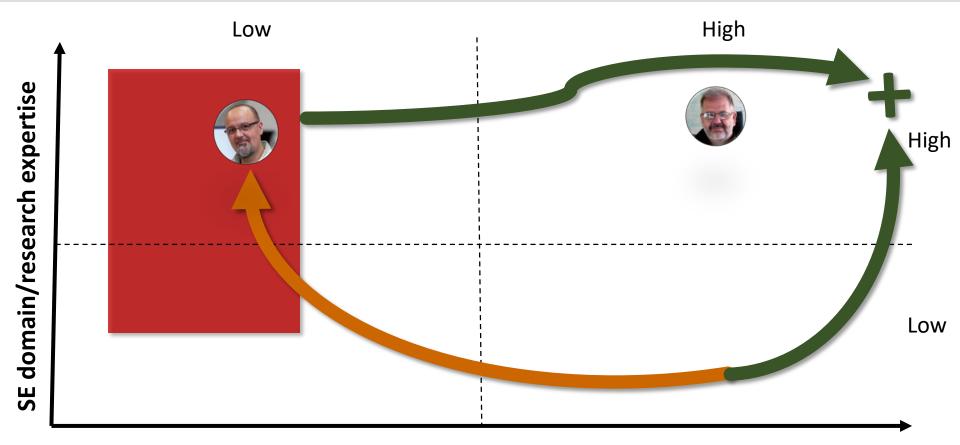
Which ML model is best for which type of data?

What are the optimal parameters?

How much training data?

What distribution should the training data have?

How can we beat Tim Menzies?



ML domain/research expertise

Working across computing disciplines: ML + SE

Very hard in academia **Publish or perish** incremental results are favored Student training expertise in two areas take much longer than Ph.D. time Scholarship is recognized differently across research areas where should we published **Contributions are different** adding to SE, but not ML **Cost of long-term collaborations** easier to go on your own, after a while

ML models that perform well, are cheap to train, and easy to explain.

Guidelines from ML experts to help us with training data, configurations, and model selection.

Easier, long-term collaborations between SE and ML researchers/experts.

DysDoc3 - https://dysdoc.github.io/

DySDoc3

2018 CHALLENGE S

SUBMISSION DATES

REGISTRATION

PROGRAM ORGANIZATION

VENUE

September 25, 2018, Madrid, Spain

Third International Workshop on Dynamic Software Documentation (DySDoc3)

Hosted by the IEEE International Conference on Software Maintenance and Evolution (ICSME 2018) The DySDoc3 workshop will host the First Software Documentation Generation Challenge (DocGen).

ML models that perform well, are cheap to train, and easy to explain.

Guidelines from ML experts to help us with training data, configurations, and model selection.

Easier, long-term collaborations between SE and ML researchers/experts.